Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Variations in Anarthrophyllum rigidum radial growth, NDVI and ecosystem productivity in the Patagonian shrubby steppes


The lack of long-term records of productivity is a critical limitation to the study of ecosystem dynamics. Annual rings, a measure of growth in woody species, are a useful tool to document ecosystem dynamics. Time series of the Normalized Difference Vegetation Index (NDVI) provide estimates of ecosystem productivity through satellite-derived data on the fraction of photosynthetic active radiation absorbed by vegetation. In the Patagonian steppes, we relate changes in NDVI to interannual variations in the radial growth of the shrub Anarthrophyllum rigidum. A widely distributed network of 15 ring-width chronologies of A. rigidum was used to estimate changes in NDVI across the Patagonia steppe (35°–50°S). In most sites, interannual variations in shrub growth and NDVI are regulated by winter precipitation. The water accumulated in the soil during winter is used by A. rigidum during the growing season, concurrent with the maximum NDVI values. At 10 from the 15 selected sites, variations in the radial growth of A. rigidum explained between 23 and 62% of the total variance in seasonal NDVI, suggesting that the A. rigidum growth at some sites provides good estimates of productivity in the Patagonian shrubby steppes during the growing season. However, we were unable to determine clear relationships between radial growth and NDVI at high-elevation mountainous sites or where intensive grazing by sheep masked the effect of climate variability on shrub growth. We conclude that dendrochronological methods can complement other estimates to reconstruct variations of productivity, supplementing and extending the few short records available in the Patagonian steppe.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Aguiar MR, Paruelo JM, Sala OE, Lauenroth WK (1996) Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. J Veg Sci 7:381–390

  2. Aleksa A, Muro EE, Hudson RR, Masotta HT (1990) Mapa de suelos de la provincia de Mendoza, esc. 1/1.000.000. In: Secretaría de Agricultura, Ganadería y Pesca. Atlas de Suelos de la República Argentina, INTA, Buenos Aires

  3. Baldi G, Nosetto MD, Aragón R, Aversa F, Paruelo JM, Jobbágy EG (2008) Long-term satellite NDVI data sets: evaluating their ability to detect ecosystem functional changes in South America. Sensors 8:5397–5425

  4. Bertiller MB, Beeskow AM, Coronato F (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). J Arid Environ 21:1–11

  5. Box EO, Holben BN, Kalb V (1989) Accuracy of the AVHRR Vegetation Index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89

  6. Briffa KR (1995) Interpreting high-resolution proxy climate data—the example of dendroclimatology. In: Von Storch H, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp 77–94

  7. Buono G, Oesterheld M, Nakamatsu V, Paruelo JM (2010) Spatial and temporal variation of primary production of Patagonian wet meadows. J Arid Environ 74:1257–1261

  8. Cook ER (1985) A time series analysis approach to tree-ring standardisation. University of Arizona, Arizona, p 171

  9. Correa MN (1984) Flora Patagónica. Dicotyledoneas dialipétalas (Droseraceae a Leguminoseae). INTA, Buenos Aires

  10. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  11. Fabricante I, Oesterheld M, Paruelo JM (2009) Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia. J Arid Environ 73:745–753

  12. Fernández-A RJ, Sala OE, Golluscio RA (1991) Woody and herbaceous aboveground production of a Patagonian steppe. J Range Manag 44:434–437

  13. Ferrer JA, Irisarri, JA (1990) In: Secretarıa de Agricultura, Ganaderıa y Pesca. Atlas de Suelos de la Republica Argentina, INTA, Buenos Aires

  14. Flombaum P, Sala OE (2007) A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 69:352–358

  15. Fritts HC (1976) Tree rings and climate. Academic Press, London

  16. Hoffmann JA (1975) Atlas climático de Sudamérica (Climatic atlas of South America). Budapest, Hungary

  17. Holben BN (1986) Characteristics of maximum-value composite images for temporal AVHRR data. Int J Remote Sens 7:1417–1434

  18. Holm AM, Cridland SW, Roderick ML (2003) The use of time-integrated NOAA-NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens Environ 85:145–158

  19. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

  20. Jicheng HE, Xuemei S (2006) Relationships between tree-ring width index and NDVI of grassland in Delingha. Chin Sci Bull 51:1106–1114

  21. Jobbágy EG, Sala OE (2000) Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol Appl 10:541–549

  22. Jobbágy EG, Sala OE, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319

  23. Liang E, Vennetier M, Lin J, Shao X (2003) Relationships between tree increment, climate and above-ground biomass of grass: a case study in the typical steppe, north China. Acta Oecol 24:87–94

  24. Liang E, Eckstein D, Liu H (2009) Assessing the recent grassland greening trend in a long-term context based on tree-ring analysis: a case study in North China. Ecol Indic 9:1280–1283

  25. Los SO, Gollatz GJ, Sellers PJ, Malmström NH, Pollack NH, DeFries RS, Bounonua L, Parris MT, Tucker CJ, Dazlich DA (2000) A global 9-year biophysical land–surface data set from NOAA AVHRR data. J Hydrometeorol 1:183–199

  26. Mooney CZ, Duval RD (1993) Bootstrapping: a nonparametric approach to statistical inference. Sage (Qass Series), Newbury Park, CA

  27. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

  28. Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78:953–958

  29. Paruelo JM, Golluscio RA, Guerschman JP, Cesa A, Jouve VV, Garbulsky MF (2004) Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Glob Ecol Biogeogr 13:385–395

  30. Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9:357–373

  31. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

  32. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite-1. NASA SP-351, Greenbelt, pp 301–317

  33. Sala OE, Austin AT (2000) Methods of estimating aboveground net primary productivity. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 31–43

  34. Salazar Lea Plaza J, Godagnone R (1990) Provincia de Santa Cruz escala 1:1.000.000. In: Secretarıa de Agricultura, Ganaderıa y Pesca. Atlas de Suelos de la Republica Argentina, INTA, Buenos Aires

  35. Salazar Lea Plaza JC, Godagnone RE, Pappalardo JE (1990) In: Secretarıa de Agricultura, Ganaderıa y Pesca. Atlas de Suelos de la Republica Argentina, INTA, Buenos Aires

  36. Sellers PJ, Tucker CJ, Collatz GJ, Los SO, Justice CO, Dazlich DA, Randall DA (1994) A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI. Int J Remote Sens 15:3519–3545

  37. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York

  38. Srur A (2009) Reconstrucción de cambios ambientales y en el uso de la tierra durante los últimos 60 años en los distritos Occidental y Central de Patagonia: Una aproximación dendrocronológica., Escuela para Graduados “Alberto Soriano”. Universidad Nacional de Buenos Aires, Buenos Aires, p 95

  39. Srur AM, Villalba R (2009) Annual growth ring of the shrub Anarthrophyllum rigidum across Patagonia: interannual variations and relationships with climate. J Arid Environ 73:1074–1083

  40. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

  41. Verón SR, Paruelo JM (2010) Desertification alters the response of vegetation to changes in precipitation. J Appl Ecol 47:1233–1241

  42. Villalba R, Grau HR, Boninsegna JA, Jacoby GC, Ripalta A (1998) Tree-ring evidence for long-term precipitation changes in subtropical South America. Int J Climatol 18:1463–1478

  43. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Climat Change 59:177–232

  44. Wang J, Rich PM, Price KP, Kettle WD (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25:3127–3138

  45. Wang J, Rich PM, Price KP, Kettle WD (2005) Relations between NDVI, grassland production, and crop yield in the Central Great Plains. Geocarto Int 20:1–7

  46. Wylie BK, Johnson DA, Laca E, Saliendra NZ, Gilmanoy TG, Reed BC, Tieszen LL, Worstell BB (2003) Calibration of remotely sensed, coarse-resolution NDVI to CO2 fluxes in a sagebrushsteppe ecosystem. Remote Sens Environ 85:243–255

Download references


The authors thank Juan Alvarez, Eugenia Ferrero, Irene Garibotti, Lidio Lopez, Mariano Morales, Alberto Ripalta, Germán San Blas and Gualberto Zalazar for field assistance; Pierre Pitte for digitizing the maps; Natacha Chacoff for statistical assistance; Elena Solsona for their assistance with data management; and Mariano Masiokas, the Subsecretaría de Recursos Hídricos and the Servicio Meteorológico Nacional for providing the climate data. Nelida Horak helped with the English edition. The authors thank Brian Luckman and two anonymous reviewers for constructive criticisms of the original manuscript. This study was partially supported by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina, (PICTR2002-186), CONICET, Argentina, and the Inter-American Institute for Global Change Research (Grant IAI-SGP008 and CRN II # 2047 and CRN II # 2031) which is supported by the US National Science Foundation (Grant GEO-0452325).

Author information

Correspondence to Ana M. Srur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srur, A.M., Villalba, R. & Baldi, G. Variations in Anarthrophyllum rigidum radial growth, NDVI and ecosystem productivity in the Patagonian shrubby steppes. Plant Ecol 212, 1841 (2011). https://doi.org/10.1007/s11258-011-9955-6

Download citation


  • Dendrochronology
  • Radial growth–NDVI relationships
  • Patagonian steppe productivity
  • Shrub rings