Plant Ecology

, Volume 212, Issue 10, pp 1613–1627 | Cite as

Colonization of experimentally created gaps along an alpine successional gradient

  • Kay Cichini
  • Erich Schwienbacher
  • Silvia Marcante
  • Gilg U. H. Seeber
  • Brigitta Erschbamer
Article

Abstract

The colonization of artificially created gaps was analyzed along an alpine successional gradient from pioneer to early, late, and old successional stages. The presence/absence of species and the abundances of seedlings and adults in the gaps were recorded and compared with those of the surrounding areas. We hypothesized that in the older successional stages, the gaps were likely to be colonized by clonal ingrowth of the surrounding species. In the younger stages, we expected to find a high presence of seedlings and adults recruited by seeds. Micro-succession in the gaps occurred at each successional stage, with all life forms among the colonizers. The abundance of seedlings was significantly higher in the gaps compared with the surrounding area. At the early and late successional stages, the surrounding areas provided safe sites for seedling establishment, with the abundance of adults recruited by seeds higher at the gap edges than in the gap centers. We can confirm the first hypothesis of a higher clonal ingrowth in the old successional stage. Clonal ingrowth also occurred in the younger successional stages. Despite the lower species richness in the gaps, a positive correlation was found between gap and surrounding species frequencies, which were the highest in the pioneer and the lowest in the old successional stage. We conclude that gaps are relevant for seedling recruitment along the entire primary succession gradient. New species invasions from greater distances were not observed in the gaps. The dominant species on each site were identified to be successful gap colonizers.

Keywords

Clonal ingrowth Facilitation Establishment Glacier foreland Life form Recruitment Seedling 

Notes

Acknowledgments

The study was funded by the Tiroler Wissenschaftsfonds. The authors thank Barbara Viehweider for helping them with the fieldwork. Language editing was performed by the American Journal Experts.

References

  1. Bates DM, DebRoy S (2004) Linear mixed models and penalized least squares. J Multivariate Anal 91:1–17CrossRefGoogle Scholar
  2. Bates DM, Maechler M (2010) lme 4. Linear mixed-effects models using S4 classes. http://lme4.r-forge.r-project.org/
  3. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193PubMedCrossRefGoogle Scholar
  4. Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arct Antarct Alp Res 39:34–43CrossRefGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135PubMedCrossRefGoogle Scholar
  6. Brooker R, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  7. Bullock JM, Hill BC, Silvertown J, Sutton M (1995) Gap colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species. Oikos 72:273–282CrossRefGoogle Scholar
  8. Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, DordrechtGoogle Scholar
  9. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848PubMedCrossRefGoogle Scholar
  10. Cavieres LA, Quiroz CL, Molina-Montenegro MA, Munoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226CrossRefGoogle Scholar
  11. Cavieres LA, Badano EI, Sierra-Almeida A, Gomez-Gonzales S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phyt 169:59–69CrossRefGoogle Scholar
  12. Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156CrossRefGoogle Scholar
  13. Chambers JC (1995) Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology 76:2124–2133CrossRefGoogle Scholar
  14. Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175CrossRefGoogle Scholar
  15. Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308CrossRefGoogle Scholar
  16. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  17. Core Development Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  18. Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001) Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J Ecol 89:1061–1071CrossRefGoogle Scholar
  19. De Witte L, Stöcklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot. doi:10.1093/aob/mcq191
  20. Dullinger S, Kleinbauer I, Pauli H, Gottfried M, Brooker R, Nagy L, Theurillat JP, Holten JI, Abdaladze O, Benito JL, Borel JL, Coldea G, Ghosn D, Kanka R, Merzouki A, Klettner C, Moiseev P, Molau U, Reiter K, Rossi G, Stanisci A, Tomaselli M, Unterluggauer P, Vittoz P, Grabherr G (2007) Weak and variable relationships between environmental severity and small-scale co-occurrence in alpine plant communities. J Ecol 95:1284–1295CrossRefGoogle Scholar
  21. Eccles Ns, Esler KJ, Cowling RM (1999) Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions. Plant Ecol 142:71–85CrossRefGoogle Scholar
  22. Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364CrossRefGoogle Scholar
  23. Erschbamer B, Pfattner M (2002) Das Keimverhalten von alpinen Arten in der Klimakammer und im Gelände. Ber Nat-Med Ver Innsbruck 89:87–97Google Scholar
  24. Erschbamer B, Bitterlich W, Raffl C (1999) Die Vegetation als Indikator für die Bodenbildung im Gletschervorfeld des Rotmoosferners (Obergurgl, Ötztal, Nordtirol). Ber Nat-Med Ver Innsbruck 86:107–122Google Scholar
  25. Erschbamer B, Kneringer E, Niederfriniger Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps. Flora 196:304–312Google Scholar
  26. Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862CrossRefGoogle Scholar
  27. Erschbamer B, Anich Ch, Benirschke M, Ganthaler A, Grassmair R, Hasibeder R, Huter V, Konzett D, Lechleitner M, Magauer M, Miller R, Newerkla S, Schneider J, Zeisler B, Schwienbacher E (2010) Das Keimverhalten von 13 alpinen Arten der Familie Asteraceae im Licht und im Dunkeln. Ber Nat-Med Ver Innsbruck 96:73–88Google Scholar
  28. Eskelinen A, Virtanen R (2005) Local and regional processes in low-productive mountain plant communities: the roles of seed and microsite limitation in relation to grazing. Oikos 110:360–368CrossRefGoogle Scholar
  29. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Finch KR (2008) Diasporenregen im Gletschervorfeld des Rotmoosferners, Obergurgl, Ötztal. Diplomarbeit University, InnsbruckGoogle Scholar
  31. Fischer M, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein, Südtirol. 3. Auf., Biologiezentrum der Oberösterreichischen Landesmuseen, Linz Google Scholar
  32. Forbis TA (2003) Seedling demography in an alpine ecosystem. Am J Bot 90:1197–1206PubMedCrossRefGoogle Scholar
  33. Forbis TA (2009) Negative associations between seedlings and adult plants in two alpine plant communities. Arct Antarct Alp Res 41:301–308CrossRefGoogle Scholar
  34. Grubb PJ (1977) The maintenance of specie-richness in plant communties: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  35. Gutiérrez-Girón A, Gavilán RG (2010) Spatial patterns and interspecific relations analysis help to better understand species distribution patterns in a Mediterranean high mountain grassland. Plant Ecol 210:137–151CrossRefGoogle Scholar
  36. Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A (2010) multcomp. Simultaneous inference in general parametric models. http://cran.r-project.org/web/packages/multcomp/
  37. Jakobsson A, Eriksson O (2000) A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494–502CrossRefGoogle Scholar
  38. Jumpponen A, Väre H, Mattson KG, Ohtonen R, Trappe JM (1999) Characterization of safe sites for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105CrossRefGoogle Scholar
  39. Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86:1395–1400CrossRefGoogle Scholar
  40. Klanderud K (2010) Species recruitment in alpine plant communities: the role of species interactions and productivity. J Ecol 98:1128–1133CrossRefGoogle Scholar
  41. Kneringer E (1996) Diasporenregen und Diasporenbank im Gletschervorfeld des Rotmoosferners (Ötztaler Alpen, Tirol). Diplomarbeit Univ, InnsbruckGoogle Scholar
  42. Leck AM, Parker VT, Simpson RL (2008) Why seedlings? In: Leck AM, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 3–13Google Scholar
  43. Marcante S, Schwienbacher E, Erschbamer B (2009a) Genesis of a soil seed bank on a primary succession in the Central Alps (Ötztal, Tyrol, Austria). Flora 204:434–444Google Scholar
  44. Marcante S, Winkler E, Erschbamer B (2009b) Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Ann Bot 103:1129–1143PubMedCrossRefGoogle Scholar
  45. Matthews JA (1992) The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, CambridgeGoogle Scholar
  46. Mayer R, Erschbamer B (2010) Seedling recruitment and seed-/microsite limitation in traditionally grazed plant communities of the alpine zone. Bas Appl Ecol 12:10–20CrossRefGoogle Scholar
  47. McCullagh P, Nelder JA (1989) Generalized Linear Models, Second Edition edn. Chapman and Hall, London, p 536Google Scholar
  48. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366CrossRefGoogle Scholar
  49. Munier A, Hermanutz L, Jacobs JD, Lewis K (2010) The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: implications for treeline advance with climate warming. Plant Ecol 210:19–30CrossRefGoogle Scholar
  50. Nagl F, Erschbamer B (2010) Vegetation und Besiedlungsstrategien. In: Koch E-M, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University Press, Innsbruck, pp 121–143Google Scholar
  51. Niederfriniger Schlag R, Erschbamer B (2000) Germination and establishment of seedlings on a glacier foreland in the Central Alps, Austria. Arct Antarct Alp Res 32:270–277CrossRefGoogle Scholar
  52. Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79:2581–2592CrossRefGoogle Scholar
  53. Pugnaire FI, Haase P, Puigdefábregas J, Cueto M, Clark SC, Incoll LD (1996) Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain. Oikos 76:455–464CrossRefGoogle Scholar
  54. Raffl C, Erschbamer B (2004) Comparative vegetation analyses of two transects crossing a characteristic glacier valley in the Central Alps. Phytocoenologia 34:225–240CrossRefGoogle Scholar
  55. Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alp Res 38:421–428CrossRefGoogle Scholar
  56. Ryser P (1993) Influences of neighbouring plants on seedling establishment in limestone grassland. J Veg Sci 4:195–202CrossRefGoogle Scholar
  57. Shimono A, Washitani I (2004) Seedling emergence patterns and dormancy/germination physiology of Primula modesta in a subalpine region. Ecol Res 19:541–551CrossRefGoogle Scholar
  58. Silvertown J (1981) Micro-spatial heterogeneity and seedling demography in species rich grassland. New Phytol 88:117–125CrossRefGoogle Scholar
  59. Silvertown J, Smith B (1988) Gaps in the canopy: the missing dimension in vegetation dynamics. Vegetatio 77:57–60CrossRefGoogle Scholar
  60. Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56CrossRefGoogle Scholar
  61. Tukey JW (1977) Exploratory data analysis. Addison Wesley Publ. Co., Reading, p 688Google Scholar
  62. Türk R, Erschbamer B (2010) Die Flechten im Gletschervorfeld des Rotmoosferners. In: Koch E-M, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University Press, Innsbruck, pp 155–163Google Scholar
  63. Urbanska KM (1997) Restoration ecology research above the timberline: colonization of safety islands on a machine-graded alpine ski run. Biodiv Cons 6:1655–1670CrossRefGoogle Scholar
  64. Urbanska KM, Fattorini M (1998) Seed bank studies in the Swiss Alps. I. Un-restored ski run and the adjacent intact grassland at high elevation. Bot Helv 108:93–104Google Scholar
  65. Urbanska KM, Schütz M, Gasser M (1988) Revegetation trials above timberline–an exercise in experimental population ecology. Veröff Geobot Inst ETH Stift Rübel 54:85–110Google Scholar
  66. Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M, Villar L (2003) Patterns in the plant species richness of European high mountain vegetation. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 149–172Google Scholar
  67. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. Welling P, Tolvanen A, Laine K (2004) The alpine soil seed bank in relation to field seedlings and standing vegetation in Subarctic Finland. Arct Antarct Alp Res 36:229–238CrossRefGoogle Scholar
  69. Weppler T, Stöcklin J (2005) Variation of sexual and clonal reproduction in the alpine Geum reptans in contrasting altitudes and successional stages. Bas Appl Ecol 6:305–316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kay Cichini
    • 1
  • Erich Schwienbacher
    • 1
  • Silvia Marcante
    • 1
  • Gilg U. H. Seeber
    • 2
  • Brigitta Erschbamer
    • 1
  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria
  2. 2.Data Science UnitUniversity of InnsbruckInnsbruckAustria

Personalised recommendations