Advertisement

Plant Ecology

, Volume 212, Issue 7, pp 1123–1134 | Cite as

Water status, drought responses, and growth of Prosopis flexuosa trees with different access to the water table in a warm South American desert

  • Carla V. GiordanoEmail author
  • Aranzazú Guevara
  • Hernán E. Boccalandro
  • Carmen Sartor
  • Pablo E. Villagra
Article

Abstract

Prosopis flexuosa trees dominate woodlands in the Central Monte Desert (Mendoza, Argentina), with <200 mm rainfall, exploiting the water table recharged by Andean rivers, and also growing in dunes with no access to the water table. Prosopis woodlands were extensively logged during development of the agricultural oasis, and surface and groundwater irrigation could lower the depth of the water table in the future. We evaluated tree populations with decreasing access to the water table: valley adult trees, valley saplings, and dune adult trees, in order to assess their ecophysiological response to water table accessibility. High and seasonally stable pre-dawn leaf water potentials (−2.2 ± 0.2 to −1.2 ± 0.07 MPa) indicated that valley adults utilize larger and more stable water reservoirs than valley saplings and dune adults (−3.8 ± 0.3 to −1.3 ± 0.07 MPa), with higher midday leaf conductance to water vapor (valley adults ~250; dune adults <60 mmol m−2 s−1), potentially higher CO2 uptake, and increased radial growth rate (valley adults 4.1 ± 0.07; dune adults 2.9 ± 0.02 mm year−1). Trees with poor access to the water table exhibited drought tolerance responses such as midday stomata closure, leaflet closure, and osmotic adjustment. Stomata density decreased in response to drought when leaf expansion was restricted. The combination of phreatophytism and drought tolerance would enlarge P. flexuosa habitats and buffer populations against changes in rainfall dynamics and water table depth.

Keywords

Dunes Groundwater Monte Phreatophytes 

Notes

Acknowledgments

We thank the Dirección de Recursos Naturales Renovables of Mendoza province for their permission to work in Telteca Natural Reserve. We are grateful to Silvana Piccone and ‘Husky’ park rangers, Hugo Debandi, Julieta Aranibar, Diego Odales, Victoria Salomón, and Ana Antúnez for field assistance; to Mariano Morales and Lidio López for help with dendrochronology; to Mercedes Fucili for help in stomata counting; to Bruno Cavagnaro, Mariana Combina, and Walter Manucha for porometer, microscope and osmometer facilities, respectively; to Nelly Horak for English correction; and to anonymous reviewers for suggestions on how to improve an earlier versions of the manuscript. We are thankful to Mariano, Chicho, Valeria, and Cecilia for their warm hospitality. This research was supported by Agencia Nacional de Promoción Científica y Tecnológica PICT 2007-01222 to PEV and PICT 2007-00492 to HEB.

Supplementary material

11258_2010_9892_MOESM1_ESM.ppt (90 kb)
Supplementary material 1 (PPT 89 kb)
11258_2010_9892_MOESM2_ESM.ppt (66 kb)
Supplementary material 2 (PPT 66 kb)

References

  1. Abraham EM (2000) Recursos y problemas ambientales de la Provincia de Mendoza. In: Abraham EM, Rodríguez Martínez F (eds) Argentina. Recursos y problemas ambientales de la zona árida. Provincias de Mendoza, San Juan y La Rioja, Mendoza, pp 15–23Google Scholar
  2. Alvarez JA, Villagra PE, Cony M (2006) Estructura y estado de conservación de los bosques de Prosopis flexuosa D.C. en el Noreste de Mendoza, Argentina. Rev Chil Hist Nat 79:75–87CrossRefGoogle Scholar
  3. Alvarez JA, Villagra PE, Rossi BE, Cesca E (2009) Spatial and temporal litterfall heterogeneity generated by woody species in the Central Monte desert. Plant Ecol 205:295–303CrossRefGoogle Scholar
  4. Ansley RJ, Jacoby PW, Meadors CH, Lawrence BK (1992) Soil and leaf water relations of differentially moisture-stressed honey mesquite (Prosopis glandulosa Torr). J Arid Environ 22:147–159Google Scholar
  5. Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Phys 150:1083–1092CrossRefGoogle Scholar
  6. Burgess S, Pate JS, Adams MA, Dawson TE (2000) Seasonal water acquisition and redistribution in the Australian woody phreatophyte, Banksia prionotes. Ann Bot 85:215–224CrossRefGoogle Scholar
  7. Caldwell MM, Dawson TE, Richards JM (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  8. Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23PubMedCrossRefGoogle Scholar
  9. Changgui W, Sosbee RR (1991) Water relations and transpiration of honey mesquite on 2 sites in west Texas. J Range Manag 44:156–160CrossRefGoogle Scholar
  10. Ehleringer J, Forseth IN (1980) Solar tracking by plants. Science 210:1094–1098PubMedCrossRefGoogle Scholar
  11. Elfadl MA, Luukkanen O (2006) Field studies on the ecological strategies of Prosopis juliflora in a dryland ecosystem 1. A leaf gas exchange approach. J Arid Environ 66:1–15CrossRefGoogle Scholar
  12. Foyer CH, Lelandais M, Kunert KJ (2006) Photoxidative stress in plants. Physiol Plantarum 92:696–717CrossRefGoogle Scholar
  13. Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567Google Scholar
  14. Giantomassi MA, Roig Juñent FA, Villagra PE, Srur AM (2009) Annual variation and influence of climate on the ring width and wood hydro system of Prosopis flexuosa DC trees using image analysis. Trees 23:117–126CrossRefGoogle Scholar
  15. González Loyarte M, Rodeghiero AG, Buk E, Trione S (2000) Análisis comparativo de dos comunidades en el bosque de Prosopis flexuosa DC. del NE de Mendoza, Argentina. Multequina 9:75–89Google Scholar
  16. Guevara A, Giordano CV, Aranibar J, Quiroga M, Villagra PE (2010) Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant Soil 330:447–464CrossRefGoogle Scholar
  17. Holmes RL (1999a) COFECHA users manual. University of Arizona, TucsonGoogle Scholar
  18. Holmes RL (1999b) Dendrochronology program library (DPL) users manual. University of Arizona, TucsonGoogle Scholar
  19. Hultine KR, Scott RL, Cable DC, Goodrich DC, Williams DG (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538CrossRefGoogle Scholar
  20. Jobbágy EG, Nosetto MG, Villagra PE, Jackson RB (2010) Water subsidies from mountains to deserts: their role sustaining groundwater-fed oases in a sandy landscape. Ecol Appl. doi: 10.1890/09-1427.1 Google Scholar
  21. Koller D (1990) Light-driven leaf movements. Plant Cell Environ 13:615–632CrossRefGoogle Scholar
  22. Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73:154–163CrossRefGoogle Scholar
  23. Mooney HA, Ehleringer JR (1978) The carbon gain benefits of solar tracking in a desert annual. Plant Cell Environ 1:307–311CrossRefGoogle Scholar
  24. Mooney HA, Gulmon SL, Rundel PW, Ehleringer J (1980) Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia (Berl.) 44:177–180CrossRefGoogle Scholar
  25. Morello J (1958) La Provincia Fitogeográfica del Monte. Opera Lilloana 2:5–115Google Scholar
  26. Nilsen ET, Sharifi RM, Rundel PW (1984) Comparative water relations of phreatophytes in the Sonoran desert of California. Ecology 65:767–778CrossRefGoogle Scholar
  27. Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  28. Prichard JM, Forseth IN (1988) Rapid leaf movement, microclimate and water relations of two temperate legumes in three contrasting habitats. Am J Bot 75:1201–1211CrossRefGoogle Scholar
  29. Resco V, Ewers BE, Sun W, Huxman TE, Weltzin JF, Williams DG (2009) Drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina. New Phytol 181:672–682PubMedCrossRefGoogle Scholar
  30. Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. J Veg Sci 14:543–550Google Scholar
  31. Schade JD, Hobbie SD (2005) Spatial and temporal variation in islands of fertility in the Sonoran desert. Biogeochemistry 73:541–553CrossRefGoogle Scholar
  32. Scholander PF, Hammel HT, Hemingsen EA, Bradstreet ED (1965) Sap pressure in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  33. Sharifi RM, Nilsen ET, Rundel PW (1982) Biomass and net primary production of Prosopis glandulosa (Fabaceae) in the Sonoran desert of California. Am J Bot 69:760–767CrossRefGoogle Scholar
  34. Simmons MT, Archer SR, Teague WR, Ansley RJ (2008) Tree (Prosopis glandulosa) effects on grass growth: an experimental assessment of above-and belowground interactions in a temperate savanna. J Arid Environ 72:314–325CrossRefGoogle Scholar
  35. Stromberg JC, Tress JA, Wilkins SD, Clark SD (1992) Response of velvet mesquite to groundwater decline. J Arid Environ 23:45–58Google Scholar
  36. Szarek SR, Woodhouse RM (1978) Ecophysiological studies of Sonoran desert plants. III. Daily course of photosynthesis for Acacia greggii and Cercidium microphyllum. Oecologia 35:285–294CrossRefGoogle Scholar
  37. Torres E, Zambrano J (2000) Hidrogeología de la provincia de Mendoza. In: Abraham EM, Rodríguez Martínez F (eds) Argentina. Recursos y problemas ambientales de la zona árida. Provincias de Mendoza, San Juan y La Rioja, Mendoza, pp 49–58Google Scholar
  38. Villagra PE, Cavagnaro JB (2006) Water stress effects on the seedling growth of Prosopis argentina and Prosopis alpataco. J Arid Environ 64:390–400CrossRefGoogle Scholar
  39. Villagra PE, Vilela A, Giordano CV, Alvarez JA (2010) Ecophysiology of Prosopis species from the arid lands of Argentina: what do we know about adaptation to stressful environments? In: Ramawat KG (ed) Desert plants. Biology and Biotechnology, Berlin, pp 321–340CrossRefGoogle Scholar
  40. Villalba R (1985) Xylem structure and cambial activity in Prosopis flexuosa DC. IAWA Bull 6:119–130Google Scholar
  41. Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19CrossRefGoogle Scholar
  42. Zou CB, Barnes PW, Archer S, McMurty CR (2005) Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters. Oecologia 145:32–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Carla V. Giordano
    • 1
    Email author
  • Aranzazú Guevara
    • 1
  • Hernán E. Boccalandro
    • 2
    • 3
  • Carmen Sartor
    • 4
  • Pablo E. Villagra
    • 4
    • 5
  1. 1.Instituto Argentino de Investigaciones en Zonas Áridas (IADIZA)Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET)MendozaArgentina
  2. 2.Instituto de Biología Agrícola de Mendoza (IBAM)Universidad Nacional de Cuyo-CONICETMendozaArgentina
  3. 3.Instituto de Ciencias BásicasUniversidad Nacional de Cuyo. Ciudad UniversitariaMendozaArgentina
  4. 4.Facultad de Ciencias AgrariasUniversidad Nacional de CuyoMendozaArgentina
  5. 5.Instituto Argentino de Investigaciones en Nivología, Glaciología y Ciencias Ambientales (IANIGLA)Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET)MendozaArgentina

Personalised recommendations