Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica

  • 457 Accesses

  • 19 Citations


An analysis of the fern vegetation on 156 plots along an elevational gradient (45-3400 m) in undisturbed forests in Costa Rica, Central America, showed a hump-shaped pattern of species richness with a maximum of up to 68 species per 400 m² at mid-elevations. This study documents the contribution of specific habitats (forest types: ridges, ravines) and niches within them (dead wood, rocks, growth zones in trees) to the local fern richness and the relation of species richness to elevation and climatic variables. Forests along ravines showed significantly higher species richness, presumably caused by high environmental humidity. The mean number of individuals of occupied niches per species increased significantly with elevation, suggesting that the niche breadth of species increased and that the differentiation of niches decreased with elevation. Both findings may explain the reduced fern species richness towards and above the upper treeline, but not at low elevations. The key factors for the decreases of species richness at the extremes of the gradient are likely to involve climatic conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Benzing D (1987) Vascular epiphytism: taxonomic participation and adaptive diversity. Ann Mo Bot Gard 74:183–204

  2. Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along an subtropical elevation gradient in the Himalayas, east Nepal. Glob Ecol Biogeogr 12:327–340

  3. Bøgh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian rain forest. Selbyana 13:25–34

  4. Cardélus LC, Colwell RK, Watkins JE Jr (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 95:144–156

  5. Engelbrecht BMJ, Velez V, Tyree MT (2000) Hydraulic conductance of two co-occurring neotropical understory shrubs with different habitat preferences. Ann For Sci 57:201–208

  6. Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25

  7. Frahm J-P, Gradstein SR (1991) An altitudinal zonation of tropical rain forests using bryophytes. J Biogeogr 18:669–678

  8. Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688

  9. Hawkins BA, Field R, Cornell HV, Currie DJ, Guègan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

  10. Heaney LR (2001) Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Glob Ecol Biogeogr 1:15–39

  11. Hemp A (2002) Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro I. Altitudinal distribution. Plant Ecol 159:211–239

  12. Herrera-McBryde O (1997) Braulio Carrillo—La Selva Region, Costa Rica. In: Davis SD, Heywood VH, Herrera-Mcbryde O, Villa-Lobos J, Hamilton AC (eds) Centers of Plant Diversity. A Guide and Strategy for their Conservation, vol 3. The Americas. IUCN-Publ. Unit, Cambridge, pp 203–208

  13. Hietz P, Briones O (1998) Correlation between water relations and within-canopy distributions of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

  14. Hietz P, Hietz-Seifert U (1995a) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498

  15. Hietz P, Hietz-Seifert U (1995b) Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. J Veg Sci 6:719–728

  16. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Monogr Popul Biol 32:1–375

  17. Hubbell SP, Foster RB (1990) Structure, dynamics and equilibrium status of old-growth forest on Barro Colorado island. In: Gentry AH (ed) Four Neotropical Forests. Yale University Press, New Haven, pp 522–541

  18. Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, De S Lao L (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science 283:554–557

  19. Ibisch LI (1996) Neotropische Epiphytendiversität—das Beispiel Bolivien. Archiv Naturwissenschaftliche Dissertationen, Bd. 1, 357 pp

  20. Ingram SW, Ferrell-Ingram K, Nadkarni NM (1996) Floristic composition of vascular epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Selbyana 17:88–103

  21. Johansson DR (1974) Ecology of vascular epiphytes in West-African rain forest. Acta Phytogeogr Suecica 59:1–136

  22. Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604

  23. Kappelle M (1996) Los Bosques de Roble (Quercus) de la Cordillera de Talamanca, Costa Rica. Instituto Nacional de Biodiversidad: Universidad de Amsterdam, 336 p

  24. Kappelle M, Gomez LD (1992) Distribution and diversity of montane Pteridophytes of the Chirripo national Park, Costa Rica. Brenesia 37:67–77

  25. Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodivers Conserv 10:1897–1921

  26. Kessler M, Bach K (1999) Using indicator groups for vegetation classification in species-rich Neotropical forests. Phytocoenologia 29:485–502

  27. Kessler M, Lehnert M (2009) Do ridge habitats contribute to pteridophyte diversity in tropical montane forests? A case study from southeastern Ecuador. J Plant Res 122:421–428

  28. Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate, and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371

  29. Kluge J, Bach K, Kessler M (2008) Elevational distribution and zonation of tropical pteridophyte assemblages in Costa Rica. Basic Appl Ecol 9:35–43

  30. Kreft H, Koster N, Kuper W, Nieder J, Barthlott W (2004) Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuni, Ecuador. J Biogeogr 31:1463–1476

  31. Krömer T, Gradstein SR (2003) Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190–195

  32. Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1810

  33. Krömer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol 189:261–278

  34. Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152

  35. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

  36. Losos EC, Leigh EG Jr (2004) Tropical forest diversity and dynamism. Findings from a large-scale plot network. The University of Chicago Press, Chicago

  37. Matelson TJ, Nadkarni NM, Longino JT (1993) Survivorship of fallen epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Ecology 74:265–269

  38. Nadkarni NM (1988) Tropical ecology from a canopy perspective. Mo Calif Acad Sci 12:189–208

  39. Nieder J, Engwald S, Barthlott W (1999) Patterns of neotropical epiphyte diversity. Selbyana 20:66–75

  40. Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 73–106

  41. Pearson DL (1995) Selecting indicator taxa for the quantitative assessment of biodiversity. In: Hawksworth DL (ed) Biodiversity. Measurement and estimation. Chapman and Hall, London, pp 75–80

  42. Pringle CM, Chacon I, Grayum MH, Greene HW, Hartshorn GS, Schatz GE, Stiles FG, Gòmez C, Rodrìguez M (1984) Natural History observations and ecological evaluation of the La Selva Protection Zone, Costa Rica. Brenesia 22:189–206

  43. Ruokolainen K, Linna A, Tuomisto H (1997) Use of Melostomataceae and pteridophytes for revealing phytogeographical patterns in Amazonian rain forests. J Trop Ecol 13:243–256

  44. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

  45. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

  46. Ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rainforest of Guyana. Biotropica 21:331–339

  47. Tuomisto H, Ruokolainen K (1994) Distribution of Pteridophyta and Melostomataceae along an edaphic gradient in an Amazonian rain forest. J Veg Sci 5:25–34

  48. Tuomisto H, Ruokolainen K, Poulsen AD, Moran RC, Quintana C, Cañas G, Celi J (2002) Distribution and Diversity of Pteridophytes and Melastomataceae along Edaphic Gradients in Yasuní National Park, Ecuadorian Amazonia. Biotropica 34:516–533

  49. Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003) Floristic patterns along a 43-km long transect in an Amazonian rain forest. J Ecol 91:743–756

  50. Vasquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86:999–1020

  51. Watkins JE Jr, Cardelús C, Colwell RK, Moran RC (2006) Species richness and distribution of ferns along an elevational gradient in Costa Rica. Am J Bot 93:73–83

  52. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

  53. Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

Download references


This study was financially granted by the Deutsche Forschungsgemeinschaft DFG and Deutscher Akademischer Austauschdienst DAAD. We thank Felix Corrales for invaluable help during the field work, the park rangers of the Sistema Nacional de Area de Conservaciones (SINAC) and the Area de Conservación Cordillera Volcánica Central (ACCVC) in Costa Rica, the staff of Biological Station La Selva and the Organization for Tropical Studies OTS, and the National Herbarium in San José for logistical support. For support on identification of fern collections, we thank A. Rojas (Elaphoglossum), I. Valdespino (Selaginella), B. Øllgaard (Huperzia), D. Barrington (Polystichum) and A.R. Smith, R.C. Moran and L.D. Gomez in cases of doubt. We thank Pete Reynoldsen and two anonymous reviewers for valuable comments on the manuscript.

Author information

Correspondence to Jürgen Kluge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 383 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kluge, J., Kessler, M. Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica. Plant Ecol 212, 1109–1121 (2011). https://doi.org/10.1007/s11258-010-9891-x

Download citation


  • Climatic environment
  • Elevational gradient
  • Ferns
  • Habitat type
  • Niche segregation
  • Tropical forest