Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities

Abstract

Under natural conditions the overlapping of multiple stressors may initiate coordinated ecophysiological responses in Mediterranean species. Seasonal plasticity may enable plants to better cope with adverse environmental conditions and/or resource variability. In this article, we study the seasonal responses of 12 woody species in two sites of differing water availability, in a Mediterranean-type climate. Plants were measured for water potential, photochemical efficiency, photosynthetic pigments and leaf proline content throughout the year. The results revealed that species presented different ecophysiological strategies, even when sharing the same area. In the xerophytic site, some species suffered severe water stress (−12 MPa and F v/F m lower than 0.3), while others exhibited optimal values of F v/F m and only moderate water stress. All the plants recovered after the first autumn rains. In the hygrophytic site, some sclerophyll species did not exhibit signs of water stress, but did suffer photoinhibition in clear winter days. A plasticity index was calculated to provide an integrated value of species plasticity. In summer, plasticity was higher in the xerophytic site, while in winter it was higher in the hygrophytic site. Ordination analysis of the physiological traits supports the traditional gradient of Mediterranean strategies from drought semideciduous to evergreen sclerophyll species, although spiny legume species formed an independent functional group. The functional responses of species clearly differ among plant communities according to the prevailing site stressors, but no unique pattern emerges. Species combine traits in broader strategies according to previous evolutionary story exhibiting a certain amount of trade among traits, each contributing to alleviate a part of the plant stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

  2. Ackerly D, Dudley S, Sultan SE, Schmitt J, Coleman J, Randal Linder C, Sandquist DR, Geber M, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

  3. Adams WW III, Demmig-Adams B (1995) The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Evonymus kiautschovicus in winter. Plant Cell Environ 18:27–117

  4. Adams WW III, Demmig-Adams B, Verhoeven AS, Baker DH (1994) Photoinhibition during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

  5. Ain-Lhout F, Zunzunegui M, Díaz Barradas MC, Tirado R, Clavjo A, García Novo F (2001) Comparison of proline accumulation in two Mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183

  6. Ain-Lhout F, Díaz Barradas MC, Zunzunegui M, Rodríguez H, García Novo F, Vargas MA (2004) Seasonal differences in photochemical efficiency and chlorophyll and carotenoid contents in six Mediterranean shrub species under field conditions. Photosynthetica 42:399–407

  7. Anon (1983) Hidrogeología del Parque Nacional de Doñana y su entorno. IGME. Servicio de Publicaciones del Ministerio de Industria y Energía, Madrid

  8. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

  9. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

  10. Castillo JM, Rubio Casal AE, Luque CJ, Luque T, Figueroa ME (2002) Comparative field summer stress of three species co-occurring in Mediterranean coastal dunes. Photosynthetica 40:49–56

  11. Correia O, Catarino FM (1994) Seasonal changes in soil-to-leaf resistance in Cistus sp. and Pistacia lentiscus. Acta Oecol 15:189–300

  12. Custodio E, Palancar M (1995) Las aguas subterráneas en Doñana. Rev Obras Públicas 3340:31–53

  13. Díaz Barradas MC, García Novo F (1988) Modificación y extinción de luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monogr Inst Piren Ecol 4:503–516

  14. Díaz Barradas MC, Zunzunegui M, García Novo F (1999) Autoecological traits of Halimium halimifolium in contrasting habitats under a Mediterranean type climate. Folia Geobot 34:189–208

  15. Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress water deficits, high light and temperature in four Mediterranean tree species. Physiol Plant 102:419–428

  16. García Novo F (1979) The ecology of dune vegetation of Doñana National Park. In: Jeffries RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell’s, Oxford, pp 571–592

  17. García Novo F (1997) The ecosystems of Doñana National Park. In: García Novo F, Crawford RMM, Díaz Barradas MC (eds) The ecology and conservation of European dunes. Publicaciones de la Universidad de Sevilla, Sevilla, pp 97–116

  18. García Novo F, Zunzunegui M, Muñoz Reinoso JC, Gallego Fernández JB, Díaz Barradas MC (1996) Surface and groundwater control on ecosystem development: the case of Doñana National Park (SW Spain). In: Cruz San Julián J, Benavente J (eds) Wetlands: a multiapproach perspective. Universidad de Granada, Granada, pp 81–101

  19. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

  20. González Bernáldez F, García Novo F, Ramírez Díaz L (1975) Analyse factorielle de la vègétation des dunes de la Reserve Biologique de Doñana (Espagne). I. Analyse numerique des donnes floristiques. Isr J Bot 24:106–117

  21. Grammatikopoulos G, Manetas Y (1994) Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Can J Bot 72:1805–1811

  22. Gratani L, Varone L (2004) Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica 42:551–558

  23. Herrera C (1984) Tipos morfológicos y funcionales en plantas del matorral mediterráneo del sur de España. Studia Oecol V:7–34

  24. Karavatas S, Manetas Y (1999) Seasonal patterns of photosystem II photochemical efficiency in evergreen sclerophylls and drought semi-deciduous shrubs under Mediterranean field conditions. Photosynthetica 36:41–49

  25. Kyparissis A, Manetas Y (1993) Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub: ecophysiological comparisons between winter and summer leaves. Acta Oecol 14:23–32

  26. Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fructicosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

  27. Kyparissis A, Drilias P, Manetas Y (2000) Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Aust J Plant Physiol 27:265–272

  28. Lansac AR, Zaballos JP, Martín A (1994) Seasonal water potential changes and proline accumulation in Mediterranean shrubland species. Vegetatio 113:141–154

  29. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New York

  30. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

  31. Lloyd DG (1984) Variation strategies of plants in heterogeneous environments. Biol J Linn Soc 21:357–385

  32. Martínez García F, Merino O, Martín A, García Martín D, Merino J (1998) Belowground structure and production in a Mediterranean sand dune shrub community. Plant Soil 201:209–216

  33. Maslova TG, Popova IA (1993) Adaptive properties of the plant pigment systems. Photosynthetica 29:195–203

  34. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

  35. Medrano H, Flexas J (2004) Respuesta de las plantas al estrés hídrico. In: Reigosa MJ, Pedrol N, Sánchez NA (eds) Ecofisiología Vegetal. Una ciencia de síntesis. Thomson, Madrid, pp 253–286

  36. Merino J, García Novo F, Sánchez Díaz M (1976) Annual fluctuation of water potential in the xerophytic shrub of Doñana Biological Reserve (Spain). Oecol Plant 11:1–11

  37. Merino O, Villar R, Martín A, García D, Merino J (1995) Vegetation response to climatic change in a dune ecosystem in Southern Spain. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean type ecosystems. Springer-Verlag, New York, pp 225–238

  38. Miller PC, Hajek E (1981) Resource availability and environmental characteristics of Mediterranean type species. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, New York, Berlin, Heidelberg, pp 17–41

  39. Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252

  40. Mooney HA, Kummerow J (1971) The comparative water economy of representative evergreen sclerophyll and drought deciduous shrubs of Chile. Bot Gaz 132:245–252

  41. Munné-Bosch S, Alegre L (2000a) The significance of β-carotene, α-tocopherol and the xanthophyll cycle in droughted Melissa officinalis plants. Aust J Plant Physiol 27:139–146

  42. Munné-Bosch S, Alegre L (2000b) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931

  43. Muñoz Reinoso JC, García Novo F (2000) Vegetation patterns on the stabilized sands of Doñana Biological Reserve. In: White PS, Mucina L, Leps J (eds) Proceedings IAVS symposium. IAVS-Opulus Press, Uppsala, pp 164–167

  44. Muñoz-Reinoso JC, García Novo F (2005) Multiscale control of vegetation patterns: the case of Doñana (SW Spain). Landscape Ecol 20:51–61

  45. Núñez-Olivera E, Martínez-Abaigar J, Escudero JC (1996) Adaptability of leaves of Cistus ladanifer to widely varying environmental conditions. Funct Ecol 10:636–646

  46. Pausas JG, Bradstoch RA, Keith DA, Keeley JE, GCTE (Global Change of Terrestrial Ecosystems) Fire Network (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

  47. Pavia EG, Badan A (1998) ENSO modulates rainfall in the Mediterranean Californias. Geophys Res Lett 25:3855–3858

  48. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora in Spain. For Sci 47:214–218

  49. Peperkorn R, Werner C, Beyschlag W (2005) Phenotypic plasticity of an invasive Acacia versus two native Mediterranean species. Funct Plant Biol 32:933–944

  50. Pintado A, Valladares F, Sancho G (1997) Exploring phenotypic plasticity in the lichen Ramalia capitata: morphology, water relations and chlorophyll content in North and Southfacing populations. Ann Bot 80:345–353

  51. Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

  52. Pons TL, Anten PR (2004) Is plasticity in portioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? Funct Ecol 18:802–811

  53. Potvin C, Lechowicz J, Tardif S (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71:1389–1400

  54. Rhizopoulou S, Meletiou-Christou MS, Diamantoglou S (1991) Water relations for sun and shade leaves of four Mediterranean evergreen sclerophylls. J Exp Bot 42:627–635

  55. Rodó X, Comín F (2001) Fluctuaciones del clima mediterráneo: conexiones globales y consecuencias regionales. In: Zamora R, Pugnaire F (eds) Aspectos funcionales de los ecosistemas mediterráneos. CSIC-AEET, Granada, pp 1–36

  56. Sánchez FJ, Manzanares M, Deandress EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59:225–235

  57. Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554

  58. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

  59. Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

  60. Terradas J (1991) Mediterranean woody plant growth-forms, biomass and production in the eastern part of the Iberian Peninsula. In: Ros JD, Prat N (eds) Homage to Ramón Margalef; or why is such pleasure in studying nature? Oecol Aquat 10:337–349

  61. Valdés B, Girón V, Sánchez Gullón E, Carmona I (2007) Catálogo florístico del espacio natural de Doñana (SO de España). Plantas vasculares. Lagascalia 27:73–362

  62. Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ 20:25–36

  63. Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamian rainforest. Ecology 81:1925–1936

  64. Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Sisó S, Gil-Pelegrín E (2004) Estrés hídrico: ecofisiología y escalas de la sequía. In: Valladares F (ed) Ecología del Bosque Mediterráneo en un mundo cambiante. Ministerio del Medio Ambiente, Madrid, pp 163–190

  65. Wang HL, Lee PD, Liu LF, Su JC (1999) Effects of sorbitol induced osmotic stress on the changes of carbohydrate and free aminoacid pools on sweet potato cell suspension cultures. Bot Bull Acad Sin 40:219–225

  66. Werner C, Correia O, Beychlag W (2002) Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Funct Plant Biol 29:999–1011

  67. Winn AA (1999) The functional significance and fitness consequences of heterophylly. Int J Plant Sci 160(No 6S):S113–S121

  68. Zunzunegui M, Díaz Barradas MC, Fernández Baco L, García Novo F (1999) Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36:17–31

  69. Zunzunegui M, Díaz Barradas MC, García Novo F (2000) Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecol 148:165–174

  70. Zunzunegui M, Díaz Barradas MC, Ain-Lhout F, Clavijo A, García Novo F (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89

  71. Zunzunegui M, Ain-Lhout F, Díaz Barradas MC, Álvarez-Cansino L, Esquivias MP, García Novo F (2009) Physiological morphological and allocation plasticity of a semideciduous shrub. Acta Oecol 35:370–379

Download references

Acknowledgements

We are grateful to Doñana National Park for making this study possible. We thank Jon Jáuregui for useful suggestions and comments on the manuscript. This study was supported by a grant from the Fundación Ramón Areces (Spain). XII Concurso Nacional. The valuable comments of two anonymous reviewers are acknowledged.

Author information

Correspondence to Maria Cruz Díaz Barradas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zunzunegui, M., Díaz Barradas, M.C., Ain-Lhout, F. et al. Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities. Plant Ecol 212, 127–142 (2011). https://doi.org/10.1007/s11258-010-9809-7

Download citation

Keywords

  • Dune fields
  • Leaf water potential
  • Photo-inhibition
  • Plasticity index
  • Plant communities
  • Plant traits
  • Proline