Plant Ecology

, Volume 211, Issue 2, pp 235–251

Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat



We determined concentrations of major nutrients in the vegetation of six habitat types (hummock, scrub, lawn, fen meadow, hollow and marginal stream), spanning a broad range of environmental conditions as regards water-table depth and water chemistry, in five mires on the southern Alps of Italy. Our study was based on chemical analyses of living tissues of plant species, grouped into growth-form based plant functional types (PFTs). We aimed at assessing to what extent the observed differences in tissue nutrient content were accounted for by community composition (both in terms of species and PFTs) and by habitat. Nutrient concentrations were overall lowest in Sphagnum mosses and highest in forbs, although the latter showed large variations presumably due to heterogeneity in mechanisms and adaptations for acquiring nutrients among species within this PFT. Nutrient content patterns in the other three PFTs varied greatly in relation to individual nutrients, with evergreen shrubs showing low nitrogen (N) concentrations, graminoids showing high N concentrations but low potassium (K) and magnesium (Mg) concentrations and deciduous shrubs showing rather high phosphorus (P) concentrations. Habitat accounted for a modest fraction of variation in tissue concentration of all nutrients except P. We concluded that the nutrient status of mire vegetation is primarily controlled by community composition and structure although habitat does exert a direct control on P concentration in the vegetation, presumably through P availability for plant uptake.


Bog Fen N:P ratio Nitrogen Phosphorus Plant functional type 


  1. Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:502–507. doi:10.1016/S0169-5347(00)89156-9 CrossRefGoogle Scholar
  2. Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1 CrossRefGoogle Scholar
  3. Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC (2009) Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Funct Ecol 23:680–688. doi:10.1111/j.1365-2435.2009.01566.x CrossRefGoogle Scholar
  4. Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634. doi:10.1046/j.1469-8137.1997.00687.x CrossRefGoogle Scholar
  5. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179 CrossRefGoogle Scholar
  6. Bragazza L, Gerdol R (1996) Response surfaces of plant species along water-table depth and pH gradients in a poor mire on the southern Alps (Italy). Ann Bot Fenn 33:11–20Google Scholar
  7. Bragazza L, Gerdol R (1999) Ecological gradients in some Sphagnum mires in the southern Alps (Italy). Appl Veg Sci 2:55–60. doi:10.2307/1478881 CrossRefGoogle Scholar
  8. Brancaleoni L, Gualmini M, Tomaselli M, Gerdol R (2007) Responses of subalpine dwarf-shrub heath to irrigation and fertilization. J Veg Sci 18:337–344. doi:10.1658/1100-9233 CrossRefGoogle Scholar
  9. Bubier JL, Moore TR, Crosby G (2006) Fine-scale vegetation distribution in a cool temperate peatland. Can J Bot 84:910–923. doi:10.1139/B06-044 CrossRefGoogle Scholar
  10. Clarkson BR, Schipper LA, Moyersoen B, Warwick B, Silvester WB (2005) Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144:550–557. doi:10.1007/s00442-005-0033-4 Google Scholar
  11. Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114. doi:10.1111/j.1469-8137.1997.tb04385.x CrossRefGoogle Scholar
  12. Cornelissen JHC, Werger MJA, Castro Diez P, Van Rheenen JWA, Rowland AP (1997) Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111:460–469. doi:10.1007/s004420050259 CrossRefGoogle Scholar
  13. Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, USA, in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37:177–188. doi:10.1657/1523-0430(2005)037[0177:DOMTAA]2.0.CO;2 CrossRefGoogle Scholar
  14. de Mars H, Wassen MJ (1999) Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecol 140:41–51. doi:10.1023/A:1009733113927 CrossRefGoogle Scholar
  15. Demars BOL, Edwards AC (2008) Tissue nutrient concentrations in aquatic macrophytes: comparison across biophysical zones, surface water habitats and plant life forms. Chem Ecol 24:413–422. doi:10.1080/02757540802534533 CrossRefGoogle Scholar
  16. Dickinson KJM, Chagué-Goff C, Mark AF, Cullen L (2002) Ecological processes and trophic status of two low-alpine patterned mires, south-central South Island, New Zealand. Austral Ecol 27:369–384. doi:10.1111/j.1442-9993.2002.tb00185.x CrossRefGoogle Scholar
  17. Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180. doi:10.1111/j.1365-2745.2007.01294.x CrossRefGoogle Scholar
  18. Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828. doi:10.1111/j.1365-2745.2005.01024.x CrossRefGoogle Scholar
  19. Eckstein RL, Karlsson PS (1997) Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species. Oikos 79:311–324. doi:10.2307/3546015 CrossRefGoogle Scholar
  20. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192 CrossRefGoogle Scholar
  21. Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229. doi:10.1890/03-0405 CrossRefGoogle Scholar
  22. Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342 CrossRefGoogle Scholar
  23. Falinska K (1997) Life history variation in Cirsium palustre and its consequences for the population demography in vegetation succession. Acta Soc Bot Pol 66:207–220Google Scholar
  24. George E, Haussler KU, Vetterlein D, Gorgus E, Marschner H (1995) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137. doi:10.1139/b92-265 CrossRefGoogle Scholar
  25. Gerdol R (2000) Water- and nutrient-use efficiency of a deciduous species, Vaccinium myrtillus, and an evergreen species, V. vitis-idaea, in a subalpine dwarf shrub heath in the southern, Alps, Italy. Oikos 88:19–32. doi:10.1034/j.1600-0706.2000.880104.x CrossRefGoogle Scholar
  26. Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, UK, pp 3–19Google Scholar
  27. Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison A, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281. doi:10.2307/3546011 CrossRefGoogle Scholar
  28. Güsewell S, Koerselman W (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst 5:37–61. doi:10.1078/1433-8319-0000022 CrossRefGoogle Scholar
  29. Hewett DG (1964) Menyanthes trifoliata L. biological flora of the British Isles. J Ecol 52:723–735CrossRefGoogle Scholar
  30. Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991. doi:10.1111/j.1365-2745.2009.01540.x CrossRefGoogle Scholar
  31. Hinsinger P, Glyn Bengough A, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9 CrossRefGoogle Scholar
  32. Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462. doi:10.1007/s00442-002-0892-x CrossRefGoogle Scholar
  33. Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294. doi:10.2307/3546494 CrossRefGoogle Scholar
  34. Humphreys ER, Lafleur PM, Flanagan LB, Hedstrom N, Syed KH, Glenn AJ, Granger R (2006) Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J Geophys Res 111:G04011. doi:10.1029/2005JG000111 CrossRefGoogle Scholar
  35. Jaeger CH, Monson RK (1992) Adaptive significance of nitrogen storage in Bistorta bistortoides, an alpine herb. Oecologia 92:578–585. doi:10.1007/BF00317852 CrossRefGoogle Scholar
  36. Johnson JB, Steingraeber DA (2003) The vegetation and ecological gradients of calcareous mires in the South Park valley, Colorado. Can J Bot 81:201–219. doi:10.1139/b03-017 CrossRefGoogle Scholar
  37. Kleijn D, Treier UA, Müller-Schärer H (2005) The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. New Phytol 166:565–575. doi:10.1111/j.1469-8137.2005.01321.x CrossRefPubMedGoogle Scholar
  38. Kleinebecker T, Hölzel N, Vogel A (2008) South Patagonian ombrotrophic bog vegetation reflects biogeochemical gradients at the landscape level. J Veg Sci 19:151–160. doi:10.3170/2008-8-18370 CrossRefGoogle Scholar
  39. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J App Ecol 33:1441–1450. doi:10.2307/2404783 CrossRefGoogle Scholar
  40. Kytoviita MM, Ruotsalainen AD (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315. doi:10.3732/ajb.94.8.1309 CrossRefGoogle Scholar
  41. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x CrossRefGoogle Scholar
  42. Litaor MI, Seastedt TR, Walker MD, Carbone M, Townsend A (2005) The biogeochemistry of phosphorus across an alpine topographic/snow gradient. Geoderma 124:49–61. doi:10.1016/j.geoderma.2004.04.001 CrossRefGoogle Scholar
  43. Malmer N, Wallén B (2005) Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type. Oikos 109:539–554. doi:10.1111/j.0030-1299.2001.13835.x CrossRefGoogle Scholar
  44. Marini L, Nascimbene J, Scotton M, Klimek S (2008) Hydrochemistry, water table depth and related distribution patterns of vascular plants in a mixed mire. Plant Biosyst 142:79–86. doi:10.1080/11263500701872507 Google Scholar
  45. Millett J, Jones RI, Waldron S (2003) The contribution of insect prey to the total nitrogen content of sundews (Drosera spp.) determined in situ by stable isotope analysis. New Phytol 158:527–534. doi:10.1046/j.1469-8137.2003.00763.x CrossRefGoogle Scholar
  46. Nakamura T, Uemura S, Yabe K (2002) Variation in nitrogen-use traits within and between five Carex species growing in the lowland mires of northern Japan. Funct Ecol 16:67–72. doi:10.1046/j.0269-8463.2001.00593.x CrossRefGoogle Scholar
  47. Nakayama T (2008) Factors controlling vegetational succession in Kushiro Mire. Ecol Model 215:225–236. doi:10.1016/j.ecolmodel.2008.02.017 CrossRefGoogle Scholar
  48. Nekola JC (2004) Vascular plant compositional gradients within and between Iowa fens. J Veg Sci 15:771–780. doi:10.1658/1100-9233 Google Scholar
  49. Ohlson M (1988) Variation in tissue element concentration in mire plants over a range of sites. Holarct Ecol 11:267–279. doi:10.1111/j.1600-0587.1988.tb00809.x Google Scholar
  50. Økland R (1989) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. I. Introduction, flora, vegetation and ecological conditions. Sommerfeltia 8:1–172Google Scholar
  51. Økland R (1990) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. II. Identification of gradients by detrended (canonical) correspondence analysis. Nord J Bot 10:191–220. doi:10.1111/j.1756-1051.1990.tb01766.x CrossRefGoogle Scholar
  52. Pellerin S, Lagneau LA, Lavoie M, Larocque M (2009) Environmental factors explaining the vegetation patterns in a temperate peatland. Comptes Rendus Biologies 332:720–731. doi:10.1016/j.crvi.2009.04.003 CrossRefPubMedGoogle Scholar
  53. Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol 196:111–121. doi:10.1007/s11258-007-9338-1 CrossRefGoogle Scholar
  54. Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459. doi:10.1111/j.1526-100X.2005.00056.x CrossRefGoogle Scholar
  55. Proctor MCF, McHaffie HS, Legg CJ, Amphlett A (2009) Evidence from water chemistry as a criterion of ombrotrophy in the mire complexes of Abernethy Forest, Scotland. J Veg Sci 20:160–169. doi:10.1111/j.1654-1103.2009.05643.x CrossRefGoogle Scholar
  56. Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221. doi:10.1890/02-0426 CrossRefGoogle Scholar
  57. Reich PB, Walters MB, Ellsworth DS (1998) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13730–13734. doi:10.1073/pnas.94.25.13730 CrossRefGoogle Scholar
  58. Rozbrojová Z, Hajek M (2008) Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J Veg Sci 19:613–620. doi:10.3170/2008-8-18416 CrossRefGoogle Scholar
  59. Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258. doi:10.2307/3564795 CrossRefGoogle Scholar
  60. Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233. doi:10.1139/b72-289 CrossRefGoogle Scholar
  61. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4.5). Microcomputer Power. Ithaca, NY, USGoogle Scholar
  62. Titus JH, Leps J (2000) The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401. doi:10.2307/2656635 CrossRefPubMedGoogle Scholar
  63. Vitt DH, Chee WL (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106. doi:10.1007/BF00032163 CrossRefGoogle Scholar
  64. Voigt W, Perner J, Jones H (2007) Using functional groups to investigate community response to environmental changes: two grassland case studies. Glob Change Biol 13:1710–1721. doi:10.1111/j.1365-2486.2007.01398.x CrossRefGoogle Scholar
  65. Wahren CHA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–552. doi:10.1111/j.1365-2486.2005.0092.x CrossRefGoogle Scholar
  66. Wallén B (1987) Growth pattern and distribution of biomass of Calluna vulgaris (L.) Hull on an ombrotrophic peat-bog. Holarct Ecol 10:73–79. doi:10.1111/j.1600-0587.1987.tb00741.x Google Scholar
  67. Welker JM, Fahnestock JT, Sullivan PF, Chimner RA (2005) Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos 109:167–177. doi:10.1111/j.0030-1299.2005.13264.x CrossRefGoogle Scholar
  68. Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric Forest Meteorol 147:172–185. doi:10.1016/j.agrformet.2007.07.010 CrossRefGoogle Scholar
  69. Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439. doi:10.1111/j.1469-8137.2008.02488.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biology and EvolutionFerrara UniversityFerraraItaly

Personalised recommendations