Plant Ecology

, Volume 209, Issue 1, pp 109–122

Invasive grasses and native Asteraceae in the Brazilian Cerrado

  • Mário Almeida-Neto
  • Paulo I. Prado
  • Umberto Kubota
  • Joice M. Bariani
  • Guilherme H. Aguirre
  • Thomas M. Lewinsohn


Anthropogenic disturbances frequently modify natural disturbance regimes and foster the invasion and spread of nonindigenous species. However, there is some dispute about whether disturbance events or invasive plants themselves are the major factors promoting the local extinction of native plant species. Here, we used a set of savanna remnants comprising a gradient of invasive grass cover to evaluate whether the species richness of Asteraceae, a major component of the Brazilian Cerrado, is affected by invasive grass cover, or alternatively, whether variation in richness can be directly ascribed to disturbance-related variables. Furthermore, we evaluate whether habitat-specialist Asteraceae differ from habitat generalist species in their responses to grass invasion. Abundance and species richness showed unimodal variation along the invasive grass gradient for both total Asteraceae and habitat-generalists. The cerrado-specialist species, however, showed no clear variation from low-to-intermediate levels of grass cover, but declined monotonically from intermediate-to-higher levels. Through a structural equation model, we found that only invasive grass cover had significant effects on both abundance and species density of Asteraceae. The effect of invasive grass cover was especially high on the cerrado-specialist species, whose proportion declined consistently with increasing invasive dominance. Our results support the prediction that invasive grasses reduce the floristic uniqueness of pristine vegetation physiognomies.


Brachiaria decumbens Endemic species Exotic species Driver hypothesis Habitat invasion Melinis minutiflora Passenger hypothesis 

Supplementary material

11258_2010_9727_MOESM1_ESM.doc (90 kb)
Supplementary material 1 (DOC 90 kb)


  1. Almeida AM, Fonseca CR, Prado PI et al (2005) Diversidade e ocorrência de Asteraceae em cerrados de São Paulo. Biota Neotropica 5:27–43. doi:10.1590/S1676-06032005000300003 CrossRefGoogle Scholar
  2. Arbuckle JL (2003) Amos user’s guide, 5.0 update. Smallwaters Corporation, ChicagoGoogle Scholar
  3. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x CrossRefPubMedGoogle Scholar
  4. Baruch Z (1996) Ecophysiological aspects of the invasion by African grasses and their impact on biodiversity and function of Neotropical Savannas. In: Solbrig OT, Medina E, Silva JF (eds) Biodiversity and savanna ecosystems processes: a global perspective. Springer, Berlin, pp 79–93Google Scholar
  5. Baruch Z, Ludlow MM, David R (1985) Photosynthetic responses of native and introduced C4 grasses from Venezuela savannas. Oecologia 67:388–393. doi:10.1007/BF00384945 CrossRefGoogle Scholar
  6. Batalha MA, Mantovani W (2000) Reproductive phenological patterns of cerrado plant species at the Pé-de-Gigante reserve (Santa Rita do Passa Quatro, SP, Brazil): a comparison between the herbaceous and woody floras. Rev Bras Biol 60:129–145. doi:10.1590/S0034-71082000000100016 CrossRefPubMedGoogle Scholar
  7. Batalha MA, Martins FR (2004) Reproductive phenology of the cerrado plant community in Emas National Park (central Brazil). Aust J Bot 52:149–161. doi:10.1071/BT03098 CrossRefGoogle Scholar
  8. Berardi A (1994) Effects of the African grass Melinis minutiflora on the plant community composition and the fire characteristics of a central Brazilian Savanna. Dissertation, University of LondonGoogle Scholar
  9. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. doi:10.1016/j.tree.2008.03.011 CrossRefPubMedGoogle Scholar
  10. Brooks ML, D’Antonio CM, Richardson DM et al (2004) Effects of invasive alien species o fire regimes. Bioscience 54:677–688. doi:10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical-theoretic approach, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  12. D’Antonio CM, Vitousek PM (1992) Biological invasions by alien grasses, the grass/fire cycle and global change. Annu Rev Ecol Syst 23:63–87. doi:10.1146/ Google Scholar
  13. Didham RK, Tylianakis JM, Hutchinson MA et al (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474. doi:10.1016/j.tree.2005.07.006 CrossRefPubMedGoogle Scholar
  14. Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western Sao Paulo State, Brazil, 1962–2000. Edinburgh Journal of Botany 63:119–130. doi:10.1017/S0960428606000357 CrossRefGoogle Scholar
  15. Durigan G, Siqueira MF, Franco GADC (2007) Threats to the Cerrado remnants of the state of São Paulo, Brazil. Sci Agric 64:355–363. doi:10.1590/S0103-90162007000400006 CrossRefGoogle Scholar
  16. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi:10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  17. Eiten G (1978) Delimitation of the cerrado concept. Plant Ecol 36:169–178. doi:10.1007/BF02342599 CrossRefGoogle Scholar
  18. Filgueiras TS (2002) Herbaceous plant communities. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, pp 121–139Google Scholar
  19. Fonseca CR, Prado PIK, Almeida-Neto M et al (2005) Flowerheads and their insects: food web structure along a fertility gradient of Cerrado. Ecol Entomol 30:36–46. doi:10.1111/j.0307-6946.2005.00664.x CrossRefGoogle Scholar
  20. Fournier LA (1974) Quantitative method for measuring phenological characteristics of trees. Turrialba 24:422–423Google Scholar
  21. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), version 2.0. Simon Fraser Univ., Burnaby, BC, and the Inst. of Ecosystem Studies, Millbrook, NYGoogle Scholar
  22. Gómez Sal A, Benayas JM, López-Pintor A, Rebollo S (1999) Role of disturbance in maintaining a savanna-like pattern in Mediterranean Retama sphaerocarpa shrubland. J Veg Sci 10:365–370. doi:10.2307/3237065 CrossRefGoogle Scholar
  23. Goodland R, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol 61:219–225CrossRefGoogle Scholar
  24. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  25. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Grace JB, Kelley JE (2006) A structural equation model analysis of postfire plant diversity in California shrublands. Ecol Appl 16:503–514. doi:10.1890/1051-0761(2006)016[0503:ASEMAO]2.0.CO;2 CrossRefPubMedGoogle Scholar
  27. Harrison S (1999) Native and alien species diversity at the local and regional scales in a grazed California grassland. Oecologia 121:99–106CrossRefGoogle Scholar
  28. Harrison S, Grace JB, Davies KF et al (2006) Invasion in a diversity hotspot: exotic cover and native richness in the Californian serpentine flora. Ecology 87:695–703. doi:10.1890/05-0778 CrossRefPubMedGoogle Scholar
  29. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity and invasion: implications for conservation. Conserv Biol 6:324–337. doi:10.1046/j.1523-1739.1992.06030324.x CrossRefGoogle Scholar
  30. Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol 32:29–36. doi:10.1111/j.1442-9993.2007.01787.x CrossRefGoogle Scholar
  31. Hoffmann WA, Lucatelli VMPC, Silva FJ et al (2004) Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers Distrib 10:99–103. doi:10.1111/j.1366-9516.2004.00063.x CrossRefGoogle Scholar
  32. Holdo RM, Holt RD, Fryxell JM (2009) Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecol Appl 19:95–109. doi:10.1890/07-1954.1 CrossRefPubMedGoogle Scholar
  33. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi:10.2307/1934145 CrossRefGoogle Scholar
  34. Kessler M (2001) Maximum plant-community endemism at intermediate intensities of anthropogenic disturbance in Bolivian montane forests. Conserv Biol 15:634–641. doi:10.1046/j.1523-1739.2001.015003634.x CrossRefGoogle Scholar
  35. Klink CA (1996) Competition between the African grass Andropogon gayanus Kunth and the native cerrado grass Schizachyrium tenerum Nees. Rev Bras Bot 19:11–15Google Scholar
  36. Klink CA, Machado R (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. doi:10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  37. Köppen W (1948) Climatología. Fondo de Cultura Económica, MéxicoGoogle Scholar
  38. Leitão-Filho HF, Aranha C, Bacchi O (1975) Plantas invasoras de culturas do Estado de São Paulo. Volume II. HUCITEC, Ministério da Agricultura, Agiplan, Banco Interamericano de Desenvolvimento, São Paulo, BrazilGoogle Scholar
  39. Lorenzi H (2000) Plantas daninhas do Brasil: terrestes, aquáticas, parasitas e tóxicas, 3rd edn. Instituto Plantarum de Estudos da Flora Ltda, Nova Odessa, BrazilGoogle Scholar
  40. Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5:131–144. doi:10.1139/er-5-2-131 CrossRefGoogle Scholar
  41. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55. doi:10.1890/04-0669 CrossRefGoogle Scholar
  42. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  43. McIntyre S, Lavorel S (1994) Predicting richness of native, rare, and exotic plants in response to habitat and disturbance variables across a variegated landscape. Conserv Biol 8:521–531. doi:10.1046/j.1523-1739.1994.08020521.x CrossRefGoogle Scholar
  44. McIntyre S, Martin TG (2001) Biophysical and human influences on plant species richness in grasslands: Comparing variegated landscapes in subtropical and temperate regions. Austral Ecol 26:233–245. doi:10.1046/j.1442-9993.2001.01108.x CrossRefGoogle Scholar
  45. Mills AJ, Rogers KH, Stalmans M, Witkowski ETF (2006) A framework for exploring the determinants of savanna and grassland distribution. Bioscience 56:579–589. doi:10.1641/0006-3568(2006)56[579:AFFETD]2.0.CO;2 CrossRefGoogle Scholar
  46. Miranda HS, Bustamante MC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, pp 51–68Google Scholar
  47. Mistry J (1998) Fire in the cerrado (savannas) of Brazil: an ecological review. Progr Phys Geogr 22:425–448. doi:10.1177/030913339802200401 Google Scholar
  48. Mistry J, Berardi A (2005) Assessing fire potential in a Brazilian savanna nature reserve. Biotropica 37:439–451. doi:10.1111/j.1744-7429.2005.00058.x CrossRefGoogle Scholar
  49. Mittermeier RA, Gil PR, Hoffmann M et al (eds) (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, Washington, DCGoogle Scholar
  50. Orr SP, Rudgers JA, Clay K (2005) Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153–165. doi:10.1007/s11258-005-5698-6 CrossRefGoogle Scholar
  51. Ortega YK, Pearson DE (2005) Weak vs. strong invaders of natural plant communities: assessing invasibility and impact. Ecol Appl 15:651–661. doi:10.1890/04-0119 CrossRefGoogle Scholar
  52. Pivello VR, Carvalho VCM, Lopes PF et al (1999a) Abundance and distribution of native and alien grasses in a “cerrado” Brazilian Savanna biological reserve. Biotropica 31:71–82. doi:10.1111/j.1744-7429.1999.tb00117.x Google Scholar
  53. Pivello VR, Shida CN, Meirelles ST (1999b) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294. doi:10.1023/A:1008933305857 CrossRefGoogle Scholar
  54. Prado H, Oliveira JB, Almeida CLA (1981) Levantamento pedológico semidetalhado do Estado de São Paulo: quadrícula de São Carlos Mapa escala 1:100.000Google Scholar
  55. Pyšek P (1998) Is there a taxonomic pattern to plant invasions? Oikos 82:282–294CrossRefGoogle Scholar
  56. Pyšek P, Pyšek A (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J Veg Sci 6:711–718CrossRefGoogle Scholar
  57. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  58. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230CrossRefGoogle Scholar
  59. Ruggiero PGC, Batalha MA, Pivello VR et al (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16. doi:10.1023/A:1015819219386 CrossRefGoogle Scholar
  60. Safford HD, Harrison S (2004) Fire effects on plant diversity in serpentine versus sandstone chaparral. Ecology 85:539–548. doi:10.1890/03-0039 CrossRefGoogle Scholar
  61. Sano SM, Almeida SP, Ribeiro JF (2008) Cerrado: Ecologia e Flora, vol 2. Embrapa, Brasília, BrazilGoogle Scholar
  62. Smith MD, Knapp AK (1999) Exotic plant species in a C4-dominated grassland: invasibility, disturbance, and community structure. Oecologia 120:605–612. doi:10.1007/s004420050896 CrossRefGoogle Scholar
  63. Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13CrossRefGoogle Scholar
  64. Vujnovic K, Wein RM, Dale MRT (2002) Predicting plant species richness in response to magnitude of grassland remnants of central Alberta. Can J Bot 80:504–511. doi:10.1139/b02-032 CrossRefGoogle Scholar
  65. White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 3–13Google Scholar
  66. Williams DG, Baruch Z (2001) African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invasions 2:12–140. doi:10.1023/A:1010040524588 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mário Almeida-Neto
    • 1
    • 2
  • Paulo I. Prado
    • 3
  • Umberto Kubota
    • 2
    • 4
  • Joice M. Bariani
    • 5
  • Guilherme H. Aguirre
    • 2
  • Thomas M. Lewinsohn
    • 4
  1. 1.Depto. Ecologia, Instituto de Ciências BiológicasUniversidade de Brasília (UnB)BrasiliaBrazil
  2. 2.Curso de Pós-graduação em Ecologia, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Depto. Ecologia, Instituto de BiociênciasUniversidade de São Paulo (USP)São PauloBrazil
  4. 4.Laboratório de Interações Insetos-Plantas, Depto. Biologia Animal, Instituto de BiologiaUNICAMPCampinasBrazil
  5. 5.Curso de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia UNICAMPCampinasBrazil

Personalised recommendations