Plant Ecology

, 206:185 | Cite as

Invasion of the Gran Canaria ravines ecosystems (Canary Islands) by the exotic species Acacia farnesiana

  • José Ramón Arévalo
  • Leila Afonso
  • Agustín Naranjo
  • Marcos Salas
Article

Abstract

The main objective of this study was to analyze if Acacia farnesiana, an introduced shrub from North and Central American tropics is spreading from areas in which it was introduced, and also to determine which animals operate as vectors for the shrub dispersion in the study area. The study site was located in southern Gran Canaria, one of the islands of the Canary Island archipelago. We selected six ravines in an area where approximately 40 plants of A. farnesiana were planted around 40 years ago. We analyzed the size structure of the population of A. farnesiana (density and biovolume) in the ravines, as well as its spatial distribution, in order to assess the degree of aggressiveness of this shrub in terms of spreading and expansion. Our results suggest that this shrub is spreading to new areas very quickly due to dispersion of seed by rabbits and an enhanced germination by the action of Mimoseste mimosae, a bruchid that decreases the germination period of the seed once it has separated from the fruit. Based on the results obtained in this study, we strongly suggest that managers of this area consider a management program to control further spread.

Keywords

Invasive species Mimosestes mimosae Neyman–Scott process Plant–animal interaction Plant size distribution 

References

  1. Arévalo JR, Fernández-Palacios JM (2005) Gradient analysis of exotic Pinus radiata plantations and potential restoration of natural vegetation in Tenerife, Canary Islands (Spain). Acta Oecologica 27:1–8CrossRefGoogle Scholar
  2. Arévalo JR, Naranjo A, Salas M (2005) Regeneration in a mixed stand of native Pinus canariensis and introduce Pinus pinea species. Acta Oecologica 28:87–94CrossRefGoogle Scholar
  3. Batista JLF, Maguire DA (1998) Modeling the spatial structure of tropical forests. For Ecol Manag 110:293–314CrossRefGoogle Scholar
  4. Busing RT (1996) Estimation of tree replacement in an Appalachian Picea-Abies forest. J Veg Sci 7:685–694CrossRefGoogle Scholar
  5. Carlquist S (1974) Island biology. Columbia University Press, ColumbiaGoogle Scholar
  6. Carmona R, Carvalho BS, Carlvalho R (2001) Controle de Acacia farnesiana e de Mimosa pteridofita em pastagem. Pesq Agrope Bras 36:1301–1307Google Scholar
  7. Collins SL, Klahr SC (1991) Tree dispersion in oak-dominated forest along an environmental gradient. Oecologia 86:471–477CrossRefGoogle Scholar
  8. Condit R, Hubbell SP, Foster RB (1992) Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. Am Nat 140:261–286CrossRefPubMedGoogle Scholar
  9. D’Antonio CM, Kark S (2002) Impacts and extent of biotic invasions in terrestrial ecosystems. Trends Ecol Evol 17:202–204CrossRefGoogle Scholar
  10. Diggle PJ (1983) The statistical analysis of spatial point patterns. Academic Press, New YorkGoogle Scholar
  11. Duncan RD (1991) Competition and the coexistence of species in a mixed podocarp stand. J Ecol 79:1073–1084CrossRefGoogle Scholar
  12. Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229CrossRefGoogle Scholar
  13. Eviner VT, Chapin FSIII (2003) Biogeochemical interactions and biodiversity. In: Melillo JM, Field CB, Moldan M (eds) Element interactions: rapid assessment project of SCOPE. Island Press, Washington, pp 151–173Google Scholar
  14. Fernández-Palacios JM, de los Santos A (1996) Ecología de las Islas Canarias. Muestreo y análisis de poblaciones y comunidades. Sociedad La Cosmológica, Santa Cruz de TenerifeGoogle Scholar
  15. Fuentes ER, Avilés R, Segura A (1989) Landscape change under indirect effects of human use: the Savanna of Central Chile. Landsc Ecol 2:73–80CrossRefGoogle Scholar
  16. Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: super-tree analyses. Evol Int J Org Evol 58:1705–1729Google Scholar
  17. Haase P, Pugnaire FI, Clark SC, Incoll LD (1997) Spatial pattern in Anthyllis cytisoides shrubland on abandoned land in southeastern Spain. J Veg Sci 8:627–634CrossRefGoogle Scholar
  18. Hatton TJ (1989) Spatial patterning of sweet briar (Rosa rubignosa) by vertebrate species. Aust J Ecol 14:199–205CrossRefGoogle Scholar
  19. He F, Legendre P, LaFrankie JV (1997) Distribution patterns of tree species in a Malaysian tropical rain forest. J Veg Sci 8:105–114CrossRefGoogle Scholar
  20. Holmgren M (2002) Exotic herbivores as drivers of plant invasions and switch to ecosystem alternative states. Biol Invasions 4:25–33CrossRefGoogle Scholar
  21. Horn HS (1975) Markovian processes of forest succession. In: Cody M, Diamond J (eds) Ecology and evolution of communities. Belknap Press, Cambridge, Massachusetts, pp 196–211Google Scholar
  22. ITGE (1990) Mapa geológico de Gran Canaria E. 1:100.000. ITGE, MadridGoogle Scholar
  23. Izquierdo I, Martín JL, Zurita N, Arechavaleta M (2004) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). Consejería de Política Territorial y Medio Ambiente Gobierno de CanariasGoogle Scholar
  24. Kunkel G (1976) Gran Canaria, Tenerife y La Gomera: notas florísticas y adiciones. Cuad Bot Canar 26(27):75–81Google Scholar
  25. Lockwood JK, Simberloff D, McKinney MK, von Holle B (2001) How many and which, plants will invade natural areas? Biol Invasions 3:1–8CrossRefGoogle Scholar
  26. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  27. Miller MF (1996) Acacia seed predation by bruchids in an African savanna ecosystem. J Appl Ecol 33:1137–1144CrossRefGoogle Scholar
  28. Moeur M (1993) Characterizing spatial patterns of trees using stem-mapped data. For Sci 39:756–775Google Scholar
  29. Parrotta JA (1992) Acacia farnesiana (L.) Willd. Aroma, huisache. SO-ITF-SM-49. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, LAGoogle Scholar
  30. Pérez PL, García A, Heene A (1999) Control y erradicación del “rabo gato” (Pennisetum setaceum). Excmo. Cabildo de La Palma. S/C de La PalmaGoogle Scholar
  31. Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca RatonGoogle Scholar
  32. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  33. Rejmanek M, Richardson DM, Higgins SI, Pitcairn MJ, Groktopp E (2005) Ecology of the invasive plants. State of the art. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasion alien species: a new synthesis. Scope 63. Island Press, Washington, pp 104–161Google Scholar
  34. Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473Google Scholar
  35. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93CrossRefPubMedGoogle Scholar
  36. Sánchez J, Ríos C, Pérez-Chacón E, Suárez C (1995) Cartografía Potencial del Medio Natural de Gran Canaria. Cabildo Insular de Gran Canaria, Universidad de Valencia, Universidad de Las Palmas de Gran CanariaGoogle Scholar
  37. Sanders NJ, Weltzin JF, Crutsinger GM, Fitzpatrick MC, Nuñez MA, Oswalt CM, Lane KE (2007) Insects mediate the effects of propagule supply and resource availability on a plant invasion. Ecology 88:2383–2391CrossRefPubMedGoogle Scholar
  38. Sanz-Elorza M, Dana ED, Sobrino E (2005) Aproximación al listado de plantas vasculares alóctonas invasoras reales y potenciales en las islas Canarias. Lazaroa 26:55–66Google Scholar
  39. Shackleton CM, Shackleton SE, Buiten E, Bird N (2007) The importance of dry woodlands and forests in rural livelihoods and poverty alleviation in South Africa. For Policy Econ 9:558–577Google Scholar
  40. Silva L, Smith CW (2004) A characterization of the non-indigenous flora of the Azores Archipelago. Biol Invasions 6:193–204CrossRefGoogle Scholar
  41. SPSS (1986) SPSS/PC + V.6.0. Base manual. SPSS Inc., Chicago, ILGoogle Scholar
  42. Stock WD, Wienand KT, Baker AC (1995) Impacts of invading N2 fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance values. Oecologia 101:375–382CrossRefGoogle Scholar
  43. Strasberg D (1995) Processus d’invasion par les plantes introduites à la Réunion et dynamique de la végétation sur les coulées volcaniques. Ecologie 26:169–180Google Scholar
  44. Suárez V (1987) La propiedad pública, vinculada y eclesiástica en Gran Canaria, en la crisis del Antiguo Régimen. Cabildo Insular de Gran Canaria, Las Palmas de Gran CanariaGoogle Scholar
  45. Súarez F (1997) Mogán. De pueblo aislado a cosmopolita. Ilustre Ayuntamiento de Mogán, MadridGoogle Scholar
  46. Szwagrzyk J (1990) Regeneration of forest related to the spatial structure of trees: a study of two forest communities in Western Carpathians, southern Poland. Vegetatio 89:11–22CrossRefGoogle Scholar
  47. Tassin J, Revière JN, Cazanove M, Bruzzese E (2006) Ranking of invasive woody plant species for management on Réunion Island. Weed Res 46:388–403CrossRefGoogle Scholar
  48. Traveset A (1991) Pre-dispersal seed predation in Central American Acacia farnesiana: factors affecting the abundance of co-ocurring bruchid beetles. Oecologia 87:570–576CrossRefGoogle Scholar
  49. Vacek S, Lepš J (1996) Spatial dynamics of forest decline: the role of neighboring trees. J Veg Sci 7:789–798CrossRefGoogle Scholar
  50. Walters C (1986) Adaptive management of removable resources. Macmillan, New YorkGoogle Scholar
  51. Weigand T (2004) Introduction to point pattern analysis with Ripley’s L and O-ring statistic using the Programita Software. Department of Ecological Modelling, UFZ—Centre of Environmental Research, LeipzigGoogle Scholar
  52. Woods KD (1979) Reciprocal replacement and the maintenance of codominance in a beech-maple forest. Oikos 33:31–39CrossRefGoogle Scholar
  53. Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen fixing exotic plants on ecosystem function. Biol Invasions 9:117–125CrossRefGoogle Scholar
  54. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • José Ramón Arévalo
    • 1
  • Leila Afonso
    • 2
  • Agustín Naranjo
    • 2
  • Marcos Salas
    • 2
  1. 1.Department of EcologyUniversidad de La LagunaLa Laguna, Islas CanariasSpain
  2. 2.Department of GeographyUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Islas CanariasSpain

Personalised recommendations