Plant Ecology

, Volume 205, Issue 2, pp 305–321 | Cite as

Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact

  • Eva Vávrová
  • Ondřej Cudlín
  • Dušan Vavříček
  • Pavel Cudlín


Our study focuses on the ground vegetation dynamics and its dependence on microsite conditions in declined climax mountain Norway spruce forests during the recovery period (1995–2006) following upon the considerable decrease of SO2 pollution. We showed that ground vegetation development shifted from prevailing mosses and vegetation-free sites covered with spruce litter to dominance by Avenella flexuosa during the earlier period of massive decline of the observed ecosystems. The expansion of Vaccinium myrtillus seems to occur mainly under the gradually defoliating tree crowns whereas larger canopy gaps and quickly deforested areas are more successfully colonized by grasses, especially Calamagrostis villosa. The gradual spruce stand decline, as well as the corresponding ground vegetation dynamics, proceeded until the end of the twentieth century. Afterwards, the ground vegetation responded to the interruption of trees dying and stopped its expansion on spruce litter microsites. Retreat of both dominant grasses accompanied by the remarkable increase in cover of mosses occurred.


Forest decline Microsite conditions Norway spruce Recovery Understorey layer 


  1. Abolin AA (1974) Change of the structure of the moss cover in relation to the distribution of precipitation under the forest canopy. Sov J Ecol 5:243–247Google Scholar
  2. Altegrim O, Sjoberg K (1996) Response of bilberry (Vaccinium myrtillus) to clear-cutting and single-tree selection harvests in uneven-aged boreal Picea abies forests. For Ecol Manage 86:39–50CrossRefGoogle Scholar
  3. Collins BS, Pickett STA (1987) Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70:3–10Google Scholar
  4. Coudun C, Gégout J-C (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524CrossRefGoogle Scholar
  5. Cudlín P, Chmelíková E (1996) Degradation and restoration processes in crowns and fine roots of polluted montane Norway spruce ecosystems. Phyton 36:69–76Google Scholar
  6. Cudlín P, Vosátka M, Kropáček K, Mejstřík V (1990) Destruction of ectomycorrhizal relationship of Norway spruce forests in Krušné hory Mts. In: Proceedings of the conference Expertentagung Waldschadenforschung im östlichen Mitteleuropa und Bayern, Passau, pp 413–417Google Scholar
  7. Cudlín P, Chmelíková E, Rauch O (1995) Monitoring of Norway spruce forest stand response to the stress impact in the Krkonoše Mts. In: Flousek J, Roberts GCS (eds) Proceedings of the international conference IUCN & MAB. Mountain National Parks and Biosphere Reserves: Monitoring and Management, Špindlerův Mlýn, September 1993. Office of Krkonoše National Park, Vrchlabí, pp 75–80Google Scholar
  8. Drda V (1994) SO2 sources and their negative influence on the air quality in the Krkonose and Jizerske hory Mts. with reference to the destruction of forest ecosystems. In: Annual report of the project PPZP MZP GA/78/93 reconstruction of forest ecosystems in the Krkonose National Park. Office of the Krkonose National Park, VrchlabíGoogle Scholar
  9. Emmer IM, Fanta J, Kobus AT, Kooijman A, Sevink J (1998) Reversing borealization as a means to restore biodiversity in Central-European mountain forests–an example from Krkonoše Mountains, Czech Republic. Biodivers Conserv 7:229–247. doi:10.1023/A:1008840603549 CrossRefGoogle Scholar
  10. Fanta J (ed) (1969) Příroda Krkonošského národního parku. SZN, PrahaGoogle Scholar
  11. Foggo MN (1989) Vegetative responses of Deschampsia flexuosa (L.) Trin. (Poaceae) seedlings to nitrogen supply and photosynthetically active radiation. Funct Ecol 3:337–343. doi:10.2307/2389374 CrossRefGoogle Scholar
  12. Giesler R, Hörberg M, Hörberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137CrossRefGoogle Scholar
  13. Grodzki W, McManus M, Knížek M, Meshkova V, Mihalciuc V, Novotný J, Turčani M, Slobodyan Y (2004) Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress. Environ Pollut 13:73–83. doi:10.1016/j.envpol.2003.10.022 CrossRefGoogle Scholar
  14. Hallbäcken L, Zhang LQ (1998) Effect of experimental acidification, nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce (Picea abies (L.) Karst.) in SE Sweden. For Ecol Manage 108:201–213CrossRefGoogle Scholar
  15. Hansen K, Draaijers GPJ, Ivens WPMF, Gundersen P, van Leeuwen NEM (1993) Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos Environ 28:3195–3205. doi:10.1016/1352-2310(94)00176-L CrossRefGoogle Scholar
  16. Havas P, Kubin E (1983) Structure, growth and organic matter content in the vegetation cover of an old spruce forest in Nothern Finland. Ann Bot Fenn 20:115–149Google Scholar
  17. Holeksa J (2003) Relationship between field-layer vegetation and canopy openings in a Carpathian subalpine spruce forest. Plant Ecol 168:57–67. doi:10.1023/A:1024457303815 CrossRefGoogle Scholar
  18. Jeník J (1961) Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: Teorie anemo-orografických systémů. ČSAV, PrahaGoogle Scholar
  19. Kellner O, Redbo-Torstensson P (1995) Effects of elevated nitrogen deposition on the field-layer vegetation in coniferous forests. Ecol Bull 44:227–237Google Scholar
  20. Kooijman AM, Emmer IM, Fanta J, Sevink J (2000) Natural regeneration potential of the degraded Krkonoše forests. Land Degrad Dev 11:459–473. doi:10.1002/1099-145X(200009/10)11:5<459::AID-LDR407>3.0.CO;2-F CrossRefGoogle Scholar
  21. Kopacek J, Vesely J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39:2179–2188. doi:10.1016/j.atmosenv.2005.01.002 CrossRefGoogle Scholar
  22. Kubát K (ed) (2002) Klíč ke květeně České republiky. Academia, PrahaGoogle Scholar
  23. Kubin E (1983) Nutrients in the soil, ground vegetation and tree layer in an old spruce forest in Nothern Finland. Ann Bot Fenn 20:361–390Google Scholar
  24. Mäkipää R (1998) Sensitivity of understorey vegetation to nitrogen and sulphur deposition in spruce stand. Ecol Eng 10:87–95. doi:10.1016/S0925-8574(97)10022-2 CrossRefGoogle Scholar
  25. Mladenoff DJ (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180. doi:10.2307/1939201 CrossRefGoogle Scholar
  26. Nakashizuka T (1985) Diffused light conditions in canopy gaps in a beech (Fagus crenata) forest. Oecologia 66:472–474. doi:10.1007/BF00379336 CrossRefGoogle Scholar
  27. Nilsson M-C, Wardle DA, Zackrisson O, Jäderlund A (2002) Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3–17. doi:10.1034/j.1600-0706.2002.970101.x CrossRefGoogle Scholar
  28. Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 141:167–174. doi:10.1016/j.envpol.2005.08.017 CrossRefPubMedGoogle Scholar
  29. Nygaard PH (1994) Ground vegetation: the B-2 experiment. In: Abrahamsen G, Stuanes AO, Tveite B (eds) Long-term experiments with acid rain in Norwegian forest ecosystems. Springer-Verlag, New York, pp 221–229Google Scholar
  30. Nygaard PH, Ødegaard T (1999) Sixty years of vegetation dynamics in a south boreal coniferous forest in southern Norway. J Veg Sci 10:5–16. doi:10.2307/3237155 CrossRefGoogle Scholar
  31. Økland RH, Eilertsen O (1996) Dynamics of understorey vegetation in an old-growth boreal coniferous forest, 1988–1993. J Veg Sci 7:747–762. doi:10.2307/3236386 CrossRefGoogle Scholar
  32. Økland RH, Rydgren K, Økland T (1999) Single-tree influence on understorey vegetation in a Norwegian boreal spruce forest. Oikos 87:488–498. doi:10.2307/3546813 CrossRefGoogle Scholar
  33. Økland T, Bakkestuen V, Økland RH, Eilertsen O (2004) Changes in forest understorey vegetation in Norway related to long-term soil acidification and climatic change. J Veg Sci 15:437–448CrossRefGoogle Scholar
  34. Olsson BA, Kellner O (2006) Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For Ecol Manage 237:458–470CrossRefGoogle Scholar
  35. Parsons WFJ, Knight DH, Miller SL (1994) Root gap dynamics in lodgepole pine forest: nitrogen transformations in gaps of different size. Ecol Appl 4:354–362. doi:10.2307/1941939 CrossRefGoogle Scholar
  36. Polák T, Cudlín P, Moravec I, Albrechtová J (2007) Macroscopic indicators for the retrospective assessment of Norway spruce crown response to stress in the Krkonoše Mountains. Trees (Berl) 21:23–35. doi:10.1007/s00468-006-0093-z CrossRefGoogle Scholar
  37. Pyšek P (1993) What do we know about Calamagrostis villosa?—a review of the species behaviour in secondary habitats. Preslia 65:1–20Google Scholar
  38. Pyšek P (1994a) Effect of soil characteristics on succession in sites reclaimed after acid rain deforestation. Ecol Eng 3:39–47. doi:10.1016/0925-8574(94)90010-8 CrossRefGoogle Scholar
  39. Pyšek P (1994b) Pattern of species dominance and factors affecting community composition in areas deforested due to air pollution. Vegetatio 112:45–56. doi:10.1007/BF00045099 CrossRefGoogle Scholar
  40. Reif A (1989) The vegetation of the Fichtelgebirge: origin, site conditions, and present status. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecol Stud, vol 77. Springer-Verlag, New York, pp 8–22Google Scholar
  41. Rosen K, Gundersen P, Tenghammar L, Johansson M, Frogner T (1992) Nitrogen enrichment in Nordic forest ecosystems. Ambio 21:364–368Google Scholar
  42. Rydgren K (1996) Vegetation-environment relationships of old-growth spruce forest vegetation in Østmarka Nature Reserve, SE Norway, and comparison of three ordination methods. Nord J Bot 16:421–439. doi:10.1111/j.1756-1051.1996.tb00254.x CrossRefGoogle Scholar
  43. Saarsalmi A, Mälkönen E (2001) Forest fertilization research in Finland: a literature review. Scand J For Res 16:514–535. doi:10.1080/02827580152699358 CrossRefGoogle Scholar
  44. Sander C, Eckstein D, Kyncl J, Dobrý J (1995) The growth of spruce (Picea abies (L.) Karst.) in the Krkonoše-(Giant) Mts. as indicated by ring width and wood density. Ann Sci For 52:401–410. doi:10.1051/forest:19950501 CrossRefGoogle Scholar
  45. Schaetzl RJ, Johnson DL, Burns SF, Small TW (1989) Tree uprooting review of impacts on forest ecology. Vegetatio 79:165–176. doi:10.1007/BF00044908 CrossRefGoogle Scholar
  46. Schwarz O (2001) Status of forestry in the Krkonose National Park. In: Appendix to the final report of the project CEC EU SUSBIOFOR. Office of the Krkonose National Park, VrchlabíGoogle Scholar
  47. Šerá B, Falta V, Cudlín P, Chmelíková E (2000) Contribution to knowledge of natural growth and development of mountain Norway spruce seedlings. Ekologia (Bratisl) 19:420–434Google Scholar
  48. Smith WH (1990) Air pollution and forest interaction between air contaminants and forest ecosystems. Springer-Verlag, New YorkGoogle Scholar
  49. Soukupová L (1996) Víceletá dynamika rozvoje Calamagrostis villosa v acidifikovaných horských smrčinách středních Sudet (Several-year dynamics of Calamagrostis villosa development in acidified mountain spruce forests of Middle Sudeticum region). In: Vacek S (ed) Monitoring, výzkum a management ekosystémů na území Krkonošského národního parku. Proceedings of the international conference, Opočno, 15–17 April 1996, pp 321–326Google Scholar
  50. Soukupová L, Rauch O (1999) Floor vegetation and soil of acidified Picea abies forests in the Giant Mountains (Central Europe). Preslia 71:257–275Google Scholar
  51. Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates vegetational change in nitrogen exposed boreal forests. J Ecol 90:61–67. doi:10.1046/j.0022-0477.2001.00629.x CrossRefGoogle Scholar
  52. ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user`s guide to Canoco for Windows. Microcomputer Power, IthacaGoogle Scholar
  53. Vacek S (1981) Zdravotní stav a snížená fruktifikace autochtonních smrkových porostů jako odraz imisního zatížení v oblasti anemo-orografického systému Mumlavy. Opera Corcon 18:89–103Google Scholar
  54. Vacek S, Matějka K (1999) The state of forest stands on permanent research plots in the Krkonoše Mts in years 1976–1997. J For Sci 45:291–315Google Scholar
  55. Vacek S, Bastl M, Lepš J (1999) Vegetation changes in forest of the Krkonoše Mts over a period of air pollution stress (1980–1995). Plant Ecol 143:1–11. doi:10.1023/A:1009833313509 CrossRefGoogle Scholar
  56. Vacek S, Podrázský V, Mikeska M, Schwarz O, Simon J, Boček M, Minx T (2006) Lesy a ekosystémy nad horní hranicí lesa v národních parcích Krkonoš (Forests and ecosystems on the tree line in the national parks of the Giant Mts.). Forestalia 2. Lesnická práce, PrahaGoogle Scholar
  57. van Roon T (1993) Spontaneous regeneration of trees in the Krkonoše Mountains, Czech Republic. Manuscript, Department of Forestry, Agricultural University of WageningenGoogle Scholar
  58. Vosátka M, Soukupová L, Rauch O, Škoda M (1995) Expansion dynamics of Calamagrostis villosa and VA—mycorrhiza in relation to different soil acidification. In: Flousek J, Roberts GCS (eds) Proceedings of the international conference IUCN & MAB. Mountain national parks and biosphere reserves: monitoring and management, Špindlerův Mlýn, September 1993. Office of Krkonoše National Park, Vrchlabí, pp 75–80Google Scholar
  59. Wild J, Neuhäuslová Z, Sofron J (2004) Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For Ecol Manage 187:117–132CrossRefGoogle Scholar
  60. Zanini E (ed) (2004) Final report of INTAS-2001-0512, Project Biological and pedological evolutionary trends in benchmark podzolic ecosystems under changing climate and anthropogenic influence (PODZOL), University of Turin, Turin.Google Scholar
  61. Żołnierz L, Wojtuń B, Matuła J (2000) Przemiany roślinności w zamierających borach świerkowych Karkonoszy i rozwój zbiorowisk roślinnych na powierzchniach wylesionych (Vegetation changes in declining spruce forests of the Karkonosze Mountains and the development of plant communities in deforested areas). Opera Corcon 36:420–425Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eva Vávrová
    • 1
    • 2
  • Ondřej Cudlín
    • 3
  • Dušan Vavříček
    • 4
  • Pavel Cudlín
    • 1
  1. 1.Institute of Systems Biology and EcologyAcademy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic
  2. 2.Institute for Environmental Studies, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  3. 3.Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6-SuchdolCzech Republic
  4. 4.Faculty of Forestry and Wood TechnologyMendel University of Agriculture and ForestryBrnoCzech Republic

Personalised recommendations