Plant Ecology

, Volume 205, Issue 1, pp 87–104 | Cite as

N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition

  • Georg Carlsson
  • Cecilia Palmborg
  • Ari Jumpponen
  • Michael Scherer-Lorenzen
  • Peter Högberg
  • Kerstin Huss-Danell


This study is the first to investigate quantitative effects of plant community composition and diversity on N2 fixation in legumes. N2 fixation in three perennial Trifolium species grown in field plots with varied number of neighbouring species was evaluated with the 15N natural abundance method (two field sites, several growing seasons, no N addition) and the isotope dilution method (one site, one growing season, 5 g N m−2). The proportion of plant N derived from N2 fixation, pNdfa, was generally high, but the N addition decreased pNdfa, especially in species-poor communities. Also following N addition, the presence of grasses in species-rich communities increased pNdfa in T. hybridum and T. repens L., while legume abundance had the opposite effect. In T. repens, competition for light from grasses appeared to limit growth and thereby the amount of N2 fixed at the plant level, expressed as mg N2 fixed per sown seed. We conclude that the occurrence of diversity effects seems to be largely context dependent, with soil N availability being a major determinant, and that species composition and functional traits are more important than species richness regarding how neighbouring plant species influence N2 fixation in legumes.


BIODEPTH Biodiversity Clover Functional traits 15N natural abundance 15N isotope dilution 



We are grateful to Christa Mulder, Alexandra Prinz and Ernst-Detlef Schulze for substantial contributions to the set-up of the experiment and data collection, and Christa Mulder, Ernst-Detlef Schulze and Osei Ampomah for valuable discussions. We thank Ann-Sofi Hahlin and Kristina Johansson for technical assistance, and all of the people who assisted in maintaining the plots, harvests and sample preparations. Svalöf-Weibull AB (Lännäs, Sweden) kindly provided seeds. Funding for this project was provided by the European Commission (Framework IV, contract ENV4-CT95-0008) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning.


  1. Amarger N, Mariotti A, Mariotti F, Durr JC, Bourguignon C, Lagacherie B (1979) Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance. Plant Soil 52:269–280. doi: 10.1007/BF02184565 CrossRefGoogle Scholar
  2. Boller BC, Nösberger J (1987) Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of 15N fertilization. Plant Soil 104:219–226. doi: 10.1007/BF02372535 CrossRefGoogle Scholar
  3. Bremer E, van Kessel C (1990) Appraisal of the nitrogen-15 natural abundance method for quantifying dinitrogen fixation. Soil Sci Soc Am J 54:404–411Google Scholar
  4. Brophy LS, Heichel GH, Russelle MP (1987) Nitrogen transfer from forage legumes to grass in a systematic planting design. Crop Sci 27:753–758Google Scholar
  5. Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372. doi: 10.1023/A:1024847017371 CrossRefGoogle Scholar
  6. Carlsson G, Palmborg C, Huss-Danell K (2006) Discrimination against 15N in three N2-fixing Trifolium species as influenced by Rhizobium strain and plant age. Acta Agric Scand Sect B Soil Plant Sci 56:31–38Google Scholar
  7. Carranca C, de Varennes A, Rolston DE (1999) Biological nitrogen fixation estimated by 15N dilution, natural 15N abundance, and N difference techniques in a subterranean clover–grass sward under Mediterranean conditions. Eur J Agron 10:81–89. doi: 10.1016/S1161-0301(98)00056-2 CrossRefGoogle Scholar
  8. Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574. doi: 10.1046/j.1365-2435.2002.00660.x CrossRefGoogle Scholar
  9. Dybzinski R, Fargione JE, Zak DR, Fornara D, Tilman D (2008) Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158:85–93. doi: 10.1007/s00442-008-1123-x PubMedCrossRefGoogle Scholar
  10. Ericson L (2005) Norrländsk växtodling. Swedish University of Agricultural Sciences, Umeå. Accessed 3 March 2009 (in Swedish)
  11. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS). Umetrics AB, UmeåGoogle Scholar
  12. Fargione J, Tilman D (2006) Plant species traits and capacity for resource reduction predict yield and abundance under competition in nitrogen-limited grassland. Funct Ecol 20:533–540. doi: 10.1111/j.1365-2435.2006.01116.x CrossRefGoogle Scholar
  13. Fargione J, Tilman D, Dybzinski R, HilleRisLambers J, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc R Soc B-Biol Sci 274:871–876CrossRefGoogle Scholar
  14. Farnham DE, George JR (1994) Harvest management effects on dinitrogen fixation and nitrogen transfer in red clover–orchardgrass mixtures. J Prod Agric 7:360–364Google Scholar
  15. Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56. doi: 10.1111/j.1365-2745.2008.01453.x CrossRefGoogle Scholar
  16. Frame J, Charlton JFL, Laidlaw AS (1998) Temperate forage legumes. CAB International, WallingfordGoogle Scholar
  17. Fried M, Middelboe V (1977) Measurement of amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715. doi: 10.1007/BF00011042 CrossRefGoogle Scholar
  18. Gylfadóttir T, Helgadóttir Á, Høgh-Jensen H (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104. doi: 10.1007/s11104-007-9323-4 CrossRefGoogle Scholar
  19. Hansen JP, Vinther FP (2001) Spatial variability of symbiotic N2 fixation in grass–white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method. Plant Soil 230:257–266. doi: 10.1023/A:1010390901845 CrossRefGoogle Scholar
  20. Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol 1:92–120. doi: 10.1078/1433-8319-00054 CrossRefGoogle Scholar
  21. Hauck RD (1973) Nitrogen tracers in nitrogen cycle studies—past use and future needs. J Environ Qual 2:317–327CrossRefGoogle Scholar
  22. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127. doi: 10.1126/science.286.5442.1123 PubMedCrossRefGoogle Scholar
  23. Heichel GH, Henjum KI (1991) Dinitrogen fixation, nitrogen transfer, and productivity of forage legume–grass communities. Crop Sci 31:202–208Google Scholar
  24. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  25. Høgh-Jensen H, Schjørring JK (1994) Measurement of biological dinitrogen fixation in grassland: comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant Soil 166:153–163. doi: 10.1007/BF00008328 CrossRefGoogle Scholar
  26. Høgh-Jensen H, Schjørring JK (1997) Residual nitrogen effect of clover-ryegrass swards on yield and N uptake of a subsequent winter wheat crop as studied by use of 15N methodology and mathematical modelling. Eur J Agron 6:235–243. doi: 10.1016/S1161-0301(96)02050-3 CrossRefGoogle Scholar
  27. Huss-Danell K, Chaia E (2005) Use of different plant parts to study N2 fixation with 15N techniques in field-grown red clover (Trifolium pratense L.). Physiol Plant 125:21–30. doi: 10.1111/j.1399-3054.2005.00530.x CrossRefGoogle Scholar
  28. Huss-Danell K, Chaia E, Carlsson G (2007) N2 fixation and nitrogen allocation to above and below ground plant parts in red clover-grasslands. Plant Soil 299:215–226. doi: 10.1007/s11104-007-9376-4 CrossRefGoogle Scholar
  29. Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000) Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem 32:1043–1052. doi: 10.1016/S0038-0717(00)00012-2 CrossRefGoogle Scholar
  30. Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras AD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. doi: 10.1046/j.1461-0248.2001.00262.x CrossRefGoogle Scholar
  31. Jumpponen A, Högberg P, Huss-Danell K, Mulder CPH (2002) Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct Ecol 16:454–461. doi: 10.1046/j.1365-2435.2002.00642.x CrossRefGoogle Scholar
  32. Jumpponen A, Mulder CPH, Huss-Danell K, Högberg P (2005) Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixtures. J Ecol 93:1136–1147. doi: 10.1111/j.1365-2745.2005.01045.x CrossRefGoogle Scholar
  33. Kahmen A, Renker C, Unsicker S, Buchmann N (2006) Niche complementarity for nitrogen use in grasslands: an explanation for the biodiviersity and ecosystem functioning relationship in grasslands? Ecology 87:1244–1255. doi: 10.1890/0012-9658(2006)87[1244:NCFNAE]2.0.CO;2 PubMedCrossRefGoogle Scholar
  34. Loiseau P, Soussanna JF, Lounault F, Delpy R (2001) Soil N contributes to the oscillations of the white clover content in mixed swards of perennial ryegrass under conditions that simulate grazing over five years. Grass Forage Sci 56:205–217. doi: 10.1046/j.1365-2494.2001.00267.x CrossRefGoogle Scholar
  35. Mulder CPH, Jumpponen A, Högberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421. doi: 10.1007/s00442-002-1043-0 CrossRefGoogle Scholar
  36. Näsholm T, Huss-Danell K, Högberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155–1161Google Scholar
  37. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW (2007) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729. doi: 10.2136/sssaj2006.0205 CrossRefGoogle Scholar
  38. Ohlsson KEA, Wallmark PH (1999) Novel calibration with correction for drift and non-linear response for continuous flow isotope ratio mass spectrometry applied to the determination of δ15N, total nitrogen, δ13C and total carbon in biological material. Analyst (Lond) 124:571–577. doi: 10.1039/a900855a CrossRefGoogle Scholar
  39. Palmborg C, Carlsson G, Huss-Danell K (2004) Biomass production following N-fertilization in experimental grassland communities differing in plant species richness and composition. In: Lüscher A, Jeangros B, Kessler W, Huguenin O, Lobsiger M, Millar N, Suter D (eds) Grassland science in Europe. European Grassland Federation 2004 general meeting in Luzern, Switzerland: land use systems in grassland dominated regions. vdf Hochschulverlag AG, Zürich, pp 183–185Google Scholar
  40. Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282. doi: 10.1111/j.0030-1299.2005.13673.x CrossRefGoogle Scholar
  41. Rasmussen J, Eriksen J, Jensen ES, Esbensen KH, Høgh-Jensen H (2007) In situ carbon and nitrogen dynamics in ryegrass–clover mixtures: transfers, deposition and leaching. Soil Biol Biochem 39:804–815. doi: 10.1016/j.soilbio.2006.10.004 CrossRefGoogle Scholar
  42. Rougoor CW, Sundaram R, van Arendonk JAM (2000) The relation between breeding management and 305-day milk production, determined via principal components regression and partial least squares. Livest Prod Sci 66:71–83. doi: 10.1016/S0301-6226(00)00156-1 CrossRefGoogle Scholar
  43. Sanford P, Pate JS, Unkovitch MJ, Thompson AN (1995) Nitrogen fixation in grazed and ungrazed subterranean clover pasture in south west Australia assessed by the 15N natural abundance technique. Aust J Agric Res 46:1427–1443. doi: 10.1071/AR9951427 CrossRefGoogle Scholar
  44. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552. doi: 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2 CrossRefGoogle Scholar
  45. Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, New York, pp 61–75Google Scholar
  46. Spehn EM, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira MC, Dimitrakopoulos PG, Finn JA, Jumpponen A, O’Donnovan G, Pereira JS, Schulze E-D, Troumbis AY, Körner C (2002) The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98:205–218. doi: 10.1034/j.1600-0706.2002.980203.x CrossRefGoogle Scholar
  47. Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze E-D, Siamantziouras A-SD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63. doi: 10.1890/03-4101 CrossRefGoogle Scholar
  48. Stopes C, Millington S, Woodward L (1996) Dry matter and nitrogen accumulation by three leguminous green manure species and the yield of a following wheat crop in an organic production system. Agric Ecosyst Environ 57:189–196. doi: 10.1016/0167-8809(95)01002-5 CrossRefGoogle Scholar
  49. Temperton VM, Mwangi PN, Scherer-Lorenzen M, Schmid B, Buchmann N (2007) Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 151:190–205. doi: 10.1007/s00442-006-0576-z PubMedCrossRefGoogle Scholar
  50. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi: 10.1038/379718a0 CrossRefGoogle Scholar
  51. Verheyen K, Bulteel H, Palmborg C, Olivié B, Nijs I, Raes D, Muys B (2008) Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia 156:351–361. doi: 10.1007/s00442-008-0998-x PubMedCrossRefGoogle Scholar
  52. Xiao YB, Li L, Zhang FS (2004) Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect N-15 techniques. Plant Soil 262:45–54. doi: 10.1023/B:PLSO.0000037019.34719.0d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Georg Carlsson
    • 1
    • 5
  • Cecilia Palmborg
    • 1
  • Ari Jumpponen
    • 1
    • 2
    • 3
  • Michael Scherer-Lorenzen
    • 4
  • Peter Högberg
    • 2
  • Kerstin Huss-Danell
    • 1
  1. 1.Department of Agricultural Research for Northern SwedenSwedish University of Agricultural Sciences (SLU)UmeåSweden
  2. 2.Department of Forest Ecology and Management, Soil Science SectionSwedish University of Agricultural Sciences (SLU)UmeåSweden
  3. 3.Division of BiologyKansas State UniversityManhattanUSA
  4. 4.ETH ZürichInstitute of Plant SciencesZürichSwitzerland
  5. 5.INRA-SupAgro, UMR 210 Eco&SolsMontpellier Cedex 1France

Personalised recommendations