Plant Ecology

, Volume 204, Issue 1, pp 135–143 | Cite as

Different growth response of five co-existing stoloniferous plant species to inoculation with native arbuscular mycorrhizal fungi

Article

Abstract

Five species of stoloniferous plants originating from the same field site (Galeobdolon montanum, Glechoma hederacea, Potentilla anserina, Ranunculus repens and Trifolium repens) were studied with respect to their interaction with arbuscular mycorrhizal (AM) fungi. More specifically, the question was addressed whether mycorrhizal growth response of host plant species could be related to their vegetative mobility. The roots of all the species examined were colonised with AM fungi in the field, with the percentage of colonisation varying among species from approximately 40% to 90%. In a subsequent pot experiment, plants of all the species were either left non-inoculated or were inoculated with a mixture of three native AM fungi isolated from the site of plant origin (Glomus mosseae, G. intraradices and G. microaggregatum). AM fungi increased phosphorus uptake in all the plant species; however, plant growth response to inoculation varied widely from negative to positive. In addition to the biomass response, AM inoculation led to a change in clonal growth traits such as stolon number and length or ramet number in some species. Possible causes of the observed differences in mycorrhizal growth response of various stoloniferous plants are discussed.

Keywords

Arbuscular mycorrhizal symbiosis Clonal growth traits Mycorrhizal colonisation Phosphorus uptake Vegetative mobility 

Notes

Acknowledgements

Financial supports by the Czech Science Foundation, project No. 526/05/P063, and the Grant Agency of the Academy of Sciences of the Czech Republic within the institutional project AV0Z60050516 are gratefully acknowledged. My sincere thanks go also to Marie Albrechtová for performing chemical analyses, and to J. Suda, Z. Sýkorová, J. Rydlová, M. Vosátka, and two anonymous reviewers for their comments on an earlier draft of the manuscript.

References

  1. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097 CrossRefGoogle Scholar
  2. Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 373–389Google Scholar
  3. Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380. doi:10.1016/j.envpol.2006.04.027 PubMedCrossRefGoogle Scholar
  4. de Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants—the foraging concept reconsidered. J Ecol 83:143–152. doi:10.2307/2261158 CrossRefGoogle Scholar
  5. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  6. Gómez S, Onoda Y, Ossipov V, Stuefer JF (2008) Systemic induced resistance: a risk-spreading strategy in clonal plant networks? New Phytol 179:1142–1153. doi:10.1111/j.1469-8137.2008.02542.x PubMedCrossRefGoogle Scholar
  7. Gryndler M, Vejsadová H, Vančura V (1992) The effect of magnesium ions on the vesicular-arbuscular mycorrhizal infection of maize roots. New Phytol 122:455–460. doi:10.1111/j.1469-8137.1992.tb00073.x CrossRefGoogle Scholar
  8. Habte M, Zhang YC, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135–139. doi:10.1139/cjb-77-1-135 CrossRefGoogle Scholar
  9. Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105(Suppl 1):1–102. doi:10.1111/j.1469-8137.1987.tb00674.x CrossRefGoogle Scholar
  10. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384. doi:10.1046/j.1365-2745.2001.00674.x CrossRefGoogle Scholar
  11. Hetrick BAD, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass pairie forbs. Can J Bot 70:1521–1528. doi:10.1139/b92-253 CrossRefGoogle Scholar
  12. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380. doi:10.1111/j.1469-8137.1992.tb01077.x CrossRefGoogle Scholar
  13. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–586. doi:10.1046/j.1469-8137.1997.00729.x CrossRefGoogle Scholar
  14. Jongen M, Fay P, Jones MB (1996) Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol 132:413–423. doi:10.1111/j.1469-8137.1996.tb01861.x CrossRefGoogle Scholar
  15. Jurkiewicz A, Orlowska E, Anielska T, Godzik B, Turnau K (2004) The influence of mycorrhiza and EDTA application on heavy metal uptake by different maize varieties. Acta Biol Cracov 46:7–18Google Scholar
  16. Klimeš L, Klimešová J, Hendriks R, van Groenendael J (1997) Clonal plant architecture: a comparative analysis of form and function. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29Google Scholar
  17. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. doi:10.1890/02-0413 CrossRefGoogle Scholar
  18. Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110. doi:10.1111/j.1461-0248.2005.00853.x PubMedCrossRefGoogle Scholar
  19. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505CrossRefGoogle Scholar
  20. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153. doi:10.1007/s005720050174 CrossRefGoogle Scholar
  21. Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48. doi:10.1007/BF02465218 CrossRefGoogle Scholar
  22. McGonigle TP, Fitter AH (1998) Growth and phosphorus inflows of Trifolium repens L. with a range of indigenous vesicular-arbuscular mycorrhizal infection levels under field conditions. New Phytol 108:59–65. doi:10.1111/j.1469-8137.1988.tb00204.x CrossRefGoogle Scholar
  23. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonisation of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi:10.1111/j.1469-8137.1990.tb00476.x CrossRefGoogle Scholar
  24. Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. doi:10.1111/j.1469-8137.2004.01169.x CrossRefGoogle Scholar
  25. Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805–814. doi:10.2307/2261445 CrossRefGoogle Scholar
  26. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep Agric Circ 939:1–19Google Scholar
  27. Onipchenko VG, Zobel M (2000) Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the Northwestern Caucasus. Folia Geobot 35:1–11. doi:10.1007/BF02803083 CrossRefGoogle Scholar
  28. Pitelka LF, Ashmun JW (1985) Physiology and integration of ramets in clonal plants. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 399–435Google Scholar
  29. Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638. doi:10.1111/j.1365-2745.2007.01244.x CrossRefGoogle Scholar
  30. Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol 327:639–648. doi:10.1016/j.crvi.2003.12.008 PubMedCrossRefGoogle Scholar
  31. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  32. Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85:181–191. doi:10.2307/2960650 CrossRefGoogle Scholar
  33. Streitwolf-Engel R, van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859Google Scholar
  34. Stuefer JF, Gómez S, van Mölken T (2004) Clonal integration beyond resource sharing: implications for defence signalling and disease transmission in clonal plant networks. Evol Ecol 18:647–667. doi:10.1007/s10682-004-5148-2 CrossRefGoogle Scholar
  35. Sudová R, Vosátka M (2008) Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant Soil 308:55–67. doi:10.1007/s11104-008-9605-5 CrossRefGoogle Scholar
  36. Sylvia DM, Alagely AK, Kane ME, Philman NL (2003) Compatible host/mycorrhizal fungus combinations for micropropagated sea oats. I. Field sampling and greenhouse evaluations. Mycorrhiza 13:177–183. doi:10.1007/s00572-003-0232-y PubMedCrossRefGoogle Scholar
  37. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  38. van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578. doi:10.1046/j.1469-8137.2003.00688.x CrossRefGoogle Scholar
  39. Varga S, Kytöviita MM (2008) Sex-specific responses to mycorrhiza in a dioecious species. Am J Bot 95:1225–1232. doi:10.3732/ajb.0800068 CrossRefGoogle Scholar
  40. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. doi:10.1007/s00572-005-0033-6 PubMedCrossRefGoogle Scholar
  41. Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738. doi:10.2307/2446507 CrossRefGoogle Scholar
  42. Wooley SC, Paine TD (2007) Can intra-specific genetic variation in arbuscular mycorrhizal fungi (Glomus etunicatum) affect a mesophyll-feeding herbivore (Tupiocoris notatus Distant)? Ecol Entomol 32:428–434. doi:10.1111/j.1365-2311.2007.00883.x CrossRefGoogle Scholar
  43. Zhu HH, Yao Q, Sun XT, Hu YL (2007) Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biol Biochem 39:942–950. doi:10.1016/j.soilbio.2006.11.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic

Personalised recommendations