Plant Ecology

, 204:69

The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, Western Hungary

  • Flóra Tinya
  • Sára Márialigeti
  • Ildikó Király
  • Balázs Németh
  • Péter Ódor
Article

Abstract

The effect of light on different understory plant groups (herbs, ground floor bryophytes, trunk-dwelling bryophytes and seedlings) was studied in a deciduous–coniferous mixed woodland in Western Hungary. The correlation of cover and species richness in each group and the cover of individual species to relative diffuse light were analyzed at different spatial scales. The study was carried out in 34 forest stands with different tree species composition. The importance of light in determining species composition was investigated by redundancy analysis. Species within each plant group were classified based on their light response. Light was positively correlated with species richness of herbs, cover of ground floor and trunk-dwelling bryophytes, and species richness and cover of seedlings. In redundancy analysis, the variance explained by light was 13.0% for herbs, 15.0% for bryophytes and 8.6% for seedlings. Within the group of herbs, species preferring open conditions and light-flexible (gap) species were separated on the basis of the spatial scale of the analysis, while shade-tolerant species were not correlated positively with light. Among bryophytes mainly terricolous, opportunistic and mineral soil-inhabiting species showed significant positive correlations with light, while epiphytic and epixylic species did not respond to light. Seedlings of Quercus petraea and Pinus sylvestris were positively related to light, while most other seedling species were shade-tolerant. In case of vascular plants, the species’ correlations with light were in agreement with their light indicator values; however, they were independent in the case of bryophytes. This study proved that the extent and spatial pattern of light influenced strongly the understory plant groups. Species within each group respond to light conditions differently, concerning the strength, direction and spatial scale of the relationships.

Keywords

Relative diffuse light Diversity Composition Environmental relationships Epiphytes Seedlings Herbaceous plants Light indicator values Temperate mixed forests 

Supplementary material

References

  1. Aude E, Lawesson JE (1998) Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecol 134:53–65. doi:10.1023/A:1009720206762 CrossRefGoogle Scholar
  2. Aude E, Poulsen RS (2000) Influence of management on the species composition of epiphytic cryptogams in Danish fagus forests. Appl Veg Sci 3:81–88. doi:10.2307/1478921 CrossRefGoogle Scholar
  3. Augusto L, Dupouey JL, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann Sci 60:823–831. doi:10.1051/forest:2003077 CrossRefGoogle Scholar
  4. Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manage 254:1–15CrossRefGoogle Scholar
  5. Barkmann JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, AssenGoogle Scholar
  6. Bartemucci P, Messier C, Canham CD (2006) Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Can J Res 36:2065–2079. doi:10.1139/X06-088 CrossRefGoogle Scholar
  7. Boros Á (1968) Bryogeographie und bryoflora ungarns. Akadémiai Kiadó, BudapestGoogle Scholar
  8. Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient–recent forest ecotones in central Belgium. J Ecol 87:628–638. doi:10.1046/j.1365-2745.1999.00379.x CrossRefGoogle Scholar
  9. Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438. doi:10.1046/j.1365-2745.1998.00269.x CrossRefGoogle Scholar
  10. Chen HYH, Legare S, Bergeron Y (2004) Variation of the understory composition and diversity along a gradient of productivity in Populus tremuloides stands of northern British Columbia, Canada. Can J Bot 82:1314–1323. doi:10.1139/b04-086 CrossRefGoogle Scholar
  11. Collins BS, Pickett STA (1987) Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70:3–10Google Scholar
  12. Collins BS, Pickett STA (1988) Demographic responses of herb layer species to experimental canopy gaps in a northern hardwoods forest. J Ecol 76:437–450. doi:10.2307/2260604 CrossRefGoogle Scholar
  13. Collins BS, Dunne KP, Pickett STA (1985) Responses of forest herbs to canopy gaps. In: Pickett STA (ed) The ecology of natural disturbance and patch dynamics. Academic Press Inc., London, pp 218–234Google Scholar
  14. Coote L, Smith GF, Kelly DL, O’Donoghue S, Dowding P, Iremonger S, Mitchell FJG (2007) Epiphytes of Sitka spruce (Picea sitchensis) plantations in Ireland and the effects of open spaces. Biodivers Conserv 16:4009–4024. doi:10.1007/s10531-007-9203-5 CrossRefGoogle Scholar
  15. Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, De Foucault B, Delelis-Dusollier A, Bardat J (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079. doi:10.1111/j.0021-8901.2004.00960.x CrossRefGoogle Scholar
  16. Draskovits RM, Ábrányi A (1981) Effect of the illumination in different types of forests. Ann Univ Sci Bud 22–23:65–70Google Scholar
  17. Dzwonko Z (2001) Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J Appl Ecol 38:942–951. doi:10.1046/j.1365-2664.2001.00649.x CrossRefGoogle Scholar
  18. Elemans M (2004) Light, nutrients and the growth of herbaceous forest species. Acta Oecol 26:197–202. doi:10.1016/j.actao.2004.05.003 CrossRefGoogle Scholar
  19. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa (indicator values of plants in Central Europe, in German). Scr Geobotanica 18:1–258Google Scholar
  20. Emborg J (1998) Undestorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For Ecol Manage 106:83–95CrossRefGoogle Scholar
  21. Farque L, Sinoquet H, Colin F (2001) Canopy structure and light interception in Quercus petraea seedlings in relation to light regime and plant density. Tree Physiol 21:1257–1267PubMedGoogle Scholar
  22. Fekete G (1974) Tölgyesek relatív megvilágítása és gyepszint-fajainak eloszlása (relative light intensity and distributions of herb layer species in oakwoods). Acta Bot Hung 9:87–97 (in Hungarian)Google Scholar
  23. Finzi AC, Canham CD (2000) Sapling growth in response to light and nitrogen availability in a southern New England forest. For Ecol Manage 131:153–165CrossRefGoogle Scholar
  24. Frisvoll AA, Presto T (1997) Spruce forest bryophytes in central Norway and their relationship to environmental factors including modern forestry. Ecography 20:3–18. doi:10.1111/j.1600-0587.1997.tb00342.x CrossRefGoogle Scholar
  25. Gabriel R, Bates JW (2003) Responses of photosynthesis to irradiance in bryophytes of the Azores laurel forest. J Bryol 25:101–105Google Scholar
  26. Godefroid S, Phartyal SS, Weyembergh G, Koedam N (2005) Ecological factors controlling the abundance of non-native invasive black cherry (Prunus serotina) in deciduous forest understory in Belgium. For Ecol Manage 210:91–105CrossRefGoogle Scholar
  27. Grandin U (2004) Dynamics of understory vegetation in boreal forests: experiences from Swedish integrated monitoring sites. For Ecol Manage 195:45–55CrossRefGoogle Scholar
  28. Grolle R, Long DG (2000) An annotated check-list of the hepaticae and anthocerotae of Europe and Macaronesia. J Bryol 22:103–140Google Scholar
  29. Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32:412–424. doi:10.2307/2405107 CrossRefGoogle Scholar
  30. Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For Ecol Manage 182:327–338CrossRefGoogle Scholar
  31. Heilmann-Clausen J, Aude E, Christensen M (2005) Cryptogam communities on decaying deciduous wood—does tree species diversity matter? Biodivers Conserv 14:2061–2078. doi:10.1007/s10531-004-4284-x CrossRefGoogle Scholar
  32. Hill MO, Bell N, Bruggeman-Nannaenga MA, Brugues M, Cano MJ, Enroth J, Flatberg KI, Frahm JP, Gallego MT, Gariletti R, Guerra J, Hedenas L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Munoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28:198–267. doi:10.1179/174328206X119998 CrossRefGoogle Scholar
  33. Humphrey JW, Davey S, Peace AJ, Ferris R, Harding K (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180. doi:10.1016/S0006-3207(02)00057-5 CrossRefGoogle Scholar
  34. Hunziker U, Brang P (2005) Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For Ecol Manage 210:67–79CrossRefGoogle Scholar
  35. Jelaska SD, Antonic O, Bozic M, Krizan J, Kusan V (2006) Responses of forest herbs to available understory light measured with hemispherical photographs in silver fir-beech forest in Croatia. Ecol Modell 194:209–218. doi:10.1016/j.ecolmodel.2005.10.013 CrossRefGoogle Scholar
  36. Jonsson BG, Esseen P-A (1990) Treefall disturbance maintains high bryophyte diversity in a boreal spruce forest. J Ecol 78:924–936. doi:10.2307/2260943 CrossRefGoogle Scholar
  37. Ke G, Werger MJA (1999) Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size. Acta Oecol 20:579–586. doi:10.1016/S1146-609X(99)00103-4 CrossRefGoogle Scholar
  38. Kenderes K, Mihók B, Standovár T (2008) Thirty years of gap dynamics in a Central European beech forest reserve. Forestry 81:111–123. doi:10.1093/forestry/cpn001 CrossRefGoogle Scholar
  39. Király I (2008) A faállomány változóinak hatása az Őrségi erdők kéreglakó mohaközösségére (The effect of stand structure to the epiphytic bryophyte assemblages in forests of Őrség region, West Hungary). MS Thesis, Loránd Eötvös University, Budapest (in Hungarian)Google Scholar
  40. Lenière A, Houle G (2006) Response of herbaceous plant diversity to reduced structural diversity in maple-dominated (Acer saccharum Marsh.) forests managed for sap extraction. For Ecol Manage 231:94–104CrossRefGoogle Scholar
  41. LI-COR Inc (1992a) LAI-2000 plant canopy analyzer instruction manual. LI-COR Inc., LincolnGoogle Scholar
  42. LI-COR Inc (1992b) 2000-90 Support software for the LAI-2000 plant canopy analyzer. LI-COR Inc., LincolnGoogle Scholar
  43. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  44. Marosi S, Somogyi S (1990) Cadastre of Hungarian regions, in Hungarian. MTA Földrajztudományi Kutató Intézet, Budapest (in Hungarian)Google Scholar
  45. Matthews JD (1991) Silvicultural systems. Calderon Press, OxfordGoogle Scholar
  46. Márialigeti S (2007) Faállomány—és egyéb környezeti változók hatása a mohavegetációra az őrségi erdőkben (The effects of stand structure and other abiotic variables to the bryophyte vegetation in forests of Őrség region, West Hungary). M.Sc. Thesis, Loránd Eötvös University, Budapest (in Hungarian)Google Scholar
  47. Mihók B, Gálhidy L, Kelemen K, Standovár T (2005) Study of gap-phase regeneration in a managed beech forest: relations between tree regeneration and light, substrate features and cover of ground vegetation. Acta Silv Lign Hung 1:25–38Google Scholar
  48. Mills SE, MacDonald SE (2004) Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J Veg Sci 15:189–198. doi:10.1658/1100-9233(2004)015[0189:POMALS]2.0.CO;2 CrossRefGoogle Scholar
  49. Mills SE, MacDonald SE (2005) Factors influencing bryophyte assemblage at different scales in the Western Canadian boreal forest. Bryologist 108:86–100. doi:10.1639/0007-2745(2005)108[86:FIBAAD]2.0.CO;2 CrossRefGoogle Scholar
  50. Moe B, Botnen A (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havra, Osteroy, western Norway. Plant Ecol 129:157–177. doi:10.1023/A:1009720132726 CrossRefGoogle Scholar
  51. Moora M, Daniell T, Kalle H, Liira J, Pussa K, Roosaluste E, Opik M, Wheatley R, Zobel M (2007) Spatial pattern and species richness of boreonemoral forest understorey and its determinants—a comparison of differently managed forests. For Ecol Manage 250:64–70CrossRefGoogle Scholar
  52. Mrotzek R, Perona L, Schmidt W (1996) Einfluss von Licht und ausgewählten Bodenfaktoren auf die Verteilung von Urtica dioica L. und Mercurialis perennis L. inder Bodenvegetation des Buchenwaldökosystems der Fallstudie Zierenberg. Verh Ges Okologie 26:559–564Google Scholar
  53. Ódor P, Mag Z, Márialigeti S, Tinya F, Németh B, Mazál I (2007) Effect of stand structure and tree species composition on different organism groups. In: International conference on natural hazards and natural disturbances in mountain forests, Trento, ItalyGoogle Scholar
  54. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, LeidenGoogle Scholar
  55. Proctor MCF (1982) Physiological ecology: water relations, light and temperature responses, carbon balance. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, New York, pp 333–382Google Scholar
  56. Roo-Zielinska E (2003) Ecological groups of vascular plant species in the herb layer of the pine forests of Northern and Central Europe. Pol J Ecol 51:493–506Google Scholar
  57. Samonil P, Vrska T (2008) Long-term vegetation dynamics in the Sumava Mts. natural spruce-fir-beech forests. Plant Ecol 196:197–214. doi:10.1007/s11258-007-9345-2 CrossRefGoogle Scholar
  58. Schmidt W, Weitemeier M, Holzapfel C (1996) Vegetation dynamics in canopy gaps of a beech forest on limestone—the influence of the light gradient on species richness. Verh Ges Okologie 25:253–260Google Scholar
  59. Schmitt CK, Slack NG (1990) Host specificity of epiphytic lichens and bryophytes: a comparison of the Adirondack Mountains (New York) and the Southern Blue Ridge Montains (North Carolina). Bryologist 93(3):257–274. doi:10.2307/3243509 CrossRefGoogle Scholar
  60. Schumann ME, White AS, Witham JW (2003) The effects of harvest-created gaps on plant species diversity, composition, and abundance in a Maine oak-pine forest. For Ecol Manage 176:543–561CrossRefGoogle Scholar
  61. Smith AJE (1982) Bryophyte ecology. Chapman and Hall, LondonGoogle Scholar
  62. SPSS Inc (1989–2005) SPSS 14.0 for Windows. Release 14.0.0Google Scholar
  63. Standovár T, Ódor P, Aszalós R, Gálhidy L (2006) Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecol 7:199–209. doi:10.1556/ComEc.7.2006.2.7 CrossRefGoogle Scholar
  64. Startsev N, Lieffers VJ, Landhausser SM (2008) Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development. J Veg Sci 19:253–260CrossRefGoogle Scholar
  65. Statsoft I (2006) Statistica version 7.1. www.statsoft.com
  66. Stefanovits P, Filep Gy, Füleki Gy (1998) Talajtan (soil science). Mezőgazda Kiadó, Budapest (in Hungarian)Google Scholar
  67. Szodfridt I (1969) Adatok az Őrség erdőinek termőhelyi adottságaihoz (Data to the soil characteristics of the forests of Őrség). Vasi Szemle 23:386–394 (in Hungarian)Google Scholar
  68. Szövényi P, Hock Z, Tóth Z (2004) Phorophyte preferences of epiphytic bryophytes in a stream valley in the Carpathian Basin. J Bryol 26:137–146. doi:10.1179/037366804225021092 CrossRefGoogle Scholar
  69. ter Braak CJ, Šmilauer P (2002) Canoco 4.5. Biometris. Wageningen and Ceske BudejoviceGoogle Scholar
  70. Thomsen RP, Svenning JC, Balslev H (2005) Overstorey control of understorey species composition in a near-natural temperate broadleaved forest in Denmark. Plant Ecol 181:113–126. doi:10.1007/s11258-005-3996-7 CrossRefGoogle Scholar
  71. Tímár G, Ódor P, Bodonczi L (2002) Az Őrségi Tájvédelmi Körzet erdeinek jellemzése (the characteristics of forest vegetation of the Őrség landscape protected area). Kanitzia 10:109–136 (in Hungarian)Google Scholar
  72. Tinya F, Mihók B, Márialigeti S, Németh B, Mazál I, Mag Z, Ódor P (2009) A comparison of three indirect methods for estimating understory light at different spatial scales in temperate mixed forests. Community Ecol (in press)Google Scholar
  73. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1964–1993) Flora Europea. Cambridge University Press, CambridgeGoogle Scholar
  74. Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577. doi:10.1046/j.1365-2745.2003.00789.x CrossRefGoogle Scholar
  75. von Oheimb G, Friedel A, Bertsch A, Härdtle W (2007) The effects of windthrow on plant species richness in a Central European beech forest. Plant Ecol 191:47–65. doi:10.1007/s11258-006-9213-5 CrossRefGoogle Scholar
  76. Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Ann Rev Ecol Evol 35:583–621. doi:10.1146/annurev.ecolsys.35.021103.105708 CrossRefGoogle Scholar
  77. Winter S, Möller GC (2008) Microhabitats in lowland beech forests as monitoring tool for nature conservation. For Ecol Manage 255:1251–1261CrossRefGoogle Scholar
  78. Wulf M (2003) Preference of plant species for woodlands with differing habitat continuities. Flora 198:444–460Google Scholar
  79. Zar JH (1999) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Flóra Tinya
    • 1
  • Sára Márialigeti
    • 2
  • Ildikó Király
    • 2
  • Balázs Németh
    • 2
  • Péter Ódor
    • 2
  1. 1.Department of Plant PathologyCorvinus University of BudapestBudapestHungary
  2. 2.Department of Plant Taxonomy and EcologyLoránd Eötvös UniversityBudapestHungary

Personalised recommendations