Plant Ecology

, Volume 202, Issue 1, pp 79–89 | Cite as

Short-term signals of climate change along an altitudinal gradient in the South Alps

  • Brigitta Erschbamer
  • Thomas Kiebacher
  • Martin Mallaun
  • Peter Unterluggauer
Article

Abstract

Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m²/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.

Keywords

Alpine Endemic species Frequency GLORIA Monitoring Re-visitation Subnival Treeline ecotone 

References

  1. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511Google Scholar
  2. Bahn M, Körner C (2003) Recent increases in summit flora caused by warming in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 437–441Google Scholar
  3. Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate change in Switzerland. Theor Appl Climatol 49:135–159. doi:10.1007/BF00865530 CrossRefGoogle Scholar
  4. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi:10.1002/joc.689 CrossRefGoogle Scholar
  5. Bosellini A (1998) Geologie der Dolomiten. Verlagsanstalt Athesia, BozenGoogle Scholar
  6. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812 PubMedCrossRefGoogle Scholar
  7. Camenisch M, Schütz M (2000) Temporal and spatial variability of the vegetation in a four-year exclosure experiment in Val Trupchun (Swiss National Park). In: Schütz M, Krüsi PO, Edwards PJ (eds) Succession research in the Swiss National Park. Nationalpark-Forschung in der Schweiz, Nr. 89. Swiss Federal Research Institute WSL, Zernez, pp 165–188Google Scholar
  8. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216 CrossRefGoogle Scholar
  9. Chapin FS III, Körner C (1995) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, BerlinGoogle Scholar
  10. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping C-L, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in arctic summer warming. Science 310:657–660. doi:10.1126/science.1117368 PubMedCrossRefGoogle Scholar
  11. Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308CrossRefGoogle Scholar
  12. Dierschke H (2005) Laurophyllisation—auch eine Erscheinung im nördlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrünen Laubwäldern. Ber Reinhold-Tuxen-Ges 17:151–168Google Scholar
  13. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate change and land-use change on alpine vegetation. J Biogeogr 30:401–417CrossRefGoogle Scholar
  14. Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemuth T, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland the result of climate warming. Int J Biometeorol 50:40–47. doi:10.1007/s00484-005-0263-5 PubMedCrossRefGoogle Scholar
  15. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252. doi:10.1111/j.0022-0477.2004.00872.x CrossRefGoogle Scholar
  16. Erschbamer B (2004) Dolomiten. In: Burga CA, Klötzli F, Grabherr G (eds) Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart, pp 84–92Google Scholar
  17. Erschbamer B (2007) Winners and loser of climate change in a central alpine glacier foreland. AAAR 39:237–244Google Scholar
  18. Erschbamer B, Mallaun M, Unterluggauer P (2003) Die Dolomiten—hot spots der Artenvielfalt. Gredleriana 3:361–376Google Scholar
  19. Erschbamer B, Mallaun M, Unterluggauer P (2006) Plant diversity along altitudinal gradients in the Southern and Central Alps of South Tyrol and Trentino (Italy). Gredleriana 6:1–22Google Scholar
  20. Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862 Google Scholar
  21. Fischer MA, Adler W, Oswald K (2005) Exkursionsflora für Österreich, Liechtenstein und Südtirol. Land Oberösterreich, OÖ Landesmuseen, LinzGoogle Scholar
  22. Forbis TA (2003) Seedling demography in an alpine ecosystem. Am J Bot 90:1197–1206. doi:10.3732/ajb.90.8.1197 CrossRefGoogle Scholar
  23. Gottfried M, Pauli H, Grabherr G (1994) Die Alpen im “Treibhaus”: Nachweise für das erwärmungsbedingte Höhersteigen der alpinen und nivalen Vegetation. Jahrb Ver Schutz Bergwelt 59:13–27Google Scholar
  24. Gottfried M, Pauli H, Reiter K, Grabherr G (2002) Potential effects of climate change on alpine and nival plants in the Alps. In: Körner C, Spehn EM (eds) Mountain biodiversity—a global assessment. Parthenon Publishing, London, pp 213–223Google Scholar
  25. Grabherr G (1989) On community structure in high alpine grasslands. Vegetatio 83:223–227. doi:10.1007/BF00031694 CrossRefGoogle Scholar
  26. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi:10.1038/369448a0 CrossRefGoogle Scholar
  27. Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Berlin, pp 167–181Google Scholar
  28. Grabherr G, Gottfried M, Pauli H (2000) Hochgebirge als “hot spots” der Biodiversität - dargestellt am Beispiel der Phytodiversität. Ber Reinhold-Tuxen-Ges 12:101–112Google Scholar
  29. Guisan A, Theurillat JP (2000) Assessing alpine plant vulnerability to climate change: a modelling perspective. Integr Assess 1:307–320. doi:10.1023/A:1018912114948 CrossRefGoogle Scholar
  30. Guisan A, Holten JI, Spichiger R, Tessier L (1995) Potential ecological impacts of climate change in the Alps and Fennoscandian Mountains. Imprimerie Nationale, GenèveGoogle Scholar
  31. Hofer HR (1992) Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Ber Geobot Inst ETH. Stift Rubel 58:39–54Google Scholar
  32. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi:10.1111/j.1466-822X.2005.00168.x CrossRefGoogle Scholar
  33. Holzinger B, Hülber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196. doi:10.1007/s11258-007-9314-9 CrossRefGoogle Scholar
  34. Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. AAAR 38:99–103Google Scholar
  35. IPCC, Intergovernmental Panel of Climate Change (2007) Climate change 2007: the physical science basis. Summary for policymakers. IPCC Secretariat, GenevaGoogle Scholar
  36. Kammer PM (1997) Räumliche, zeitliche und witterungsbedingte Variabilität eines Trespen-Halbtrockenrasens (Mesobromion) im Schweizer Mittelland. Ein Beitrag zur Methodik der Dauerflächenbeobachtung. Diss Bot 272:1–255Google Scholar
  37. Kapralov DS, Shiyatov SG, Moiseev PA, Fomin VV (2006) Changes in the composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the northern Ural Mountains. Russ J Ecol 6:367–372. doi:10.1134/S1067413606060014 CrossRefGoogle Scholar
  38. Kazakis G, Ghosn D, Vogiatzakis IN, Papanastasis VP (2006) Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers Conserv 16:1603–1615. doi:10.1007/s10531-006-9021-1 CrossRefGoogle Scholar
  39. Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Chang 1:70–77. doi:10.1007/PL00011535 CrossRefGoogle Scholar
  40. Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6. doi:10.1191/0959683603hl589ft CrossRefGoogle Scholar
  41. Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054. doi:10.1890/04-1563 CrossRefGoogle Scholar
  42. Körner C (1992) Response of alpine vegetation to global climate change. Catena Suppl 22:85–96Google Scholar
  43. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi:10.1007/s004420050540 CrossRefGoogle Scholar
  44. Kudernatsch T, Fischer A, Bernhardt-Römermann M, Abs C (2008) Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic App Ecol 9:263–274Google Scholar
  45. Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52. doi:10.1111/j.1365-2745.2006.01190.x CrossRefGoogle Scholar
  46. Lambrecht SC, Loik ME, Inouye DW, Harte J (2006) Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytol 173:121–134. doi:10.1111/j.1469-8137.2006.01892.x CrossRefGoogle Scholar
  47. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  48. Leonardi P (1967) Le Dolomiti. Geologia dei monti tra Isarco e Piave, 3 vol. TrentoGoogle Scholar
  49. Marcante M, Kiebacher T, Erschbamer B (2008) Reproductive responses of glacier foreland species to simulated climate change. Coll Phytosoc (in press)Google Scholar
  50. Moiseev PA, Shiyatov SG (2003) Vegetation dynamics at the treeline ecotone in the Ural highlands, Russia. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 423–435Google Scholar
  51. Molau U (1996) Phenology and reproductive success in arctic plants: susceptibility to climate change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 153–170Google Scholar
  52. Molau U (2000) Tundra plant responses to experimental and natural temperature changes. Mem Natl Inst Polar Res 54(special issue):445–466Google Scholar
  53. Molau U, Mølgaard P (1996) ITEX manual, 2nd edn. Danish Polar Center, CopenhagenGoogle Scholar
  54. Nadelhoffer KJ, Shaver GR, Giblin A, Rastetter EB (1996) Potential impacts of climate change on nutrient cycling, decomposition, and productivity in arctic ecosystems. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 349–364Google Scholar
  55. Panikov NS (1996) A kinetic approach to microbial ecology in arctic and boreal ecosystems in relation to global change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 171–188Google Scholar
  56. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 PubMedCrossRefGoogle Scholar
  57. Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107. doi:10.1016/j.baae.2007.01.005 CrossRefGoogle Scholar
  58. Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–390Google Scholar
  59. Pauli H, Gottfried M, Grabherr G (2001a) High summits of the Alps in a changing climate. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change. Kluwer, New York, pp 139–149Google Scholar
  60. Pauli H, Gottfried M, Hohenwallner D, Hülber K, Reiter K, Grabherr G (2001b) Gloria—the multi-summit approach. Field manual, 2nd draft version, ViennaGoogle Scholar
  61. Pauli H, Gottfried M, Dirnböck T, Dullinger S, Grabherr G (2003) Assessing the long-term dynamics of endemic plants at summit habitats. In: Nagy L, Grabherr G, Körner CH, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 195–207Google Scholar
  62. Pauli H, Gottfried M, Hohenwallner D, Reiter K, Casale R, Grabherr G (2004) The GLORIA field manual multi-summit approach. DG Research European Commission, EUR 21213Google Scholar
  63. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Chang Biol 13:147–156. doi:10.1111/j.1365-2486.2006.01282.x CrossRefGoogle Scholar
  64. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140. doi:10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  65. Rabotnov TA (1995) Phytozönologie. Ulmer, StuttgartGoogle Scholar
  66. Rossi G, Parolo G (2005) Gli effetti dei cambiamenti climatici sulle specie vascolari degli ambienti di alta quota: i casi-studio di Alpi Retiche e dell’Appennino settentrionale. Inf Bot Ital 37:238–239Google Scholar
  67. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sannwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 PubMedCrossRefGoogle Scholar
  68. Sandvik SM, Totland Ø (2000) Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 7:201–213Google Scholar
  69. Stampfli A (1992) Year-to-year changes in unfertilized meadows of great species richness detected by point quadrat analysis. Vegetatio 103:125–132Google Scholar
  70. Stanisci A, Pelino G, Blasi C (2005) Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodivers Conserv 14:1301–1318. doi:10.1007/s10531-004-9674-6 CrossRefGoogle Scholar
  71. Ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows. Centre of Biometry, WageningenGoogle Scholar
  72. Theurillat J-P (1995) Climate change and the alpine flora: some perspectives. In: Guisan A, Holten JI, Spichiger R, Tessier L (eds) Potential ecological impacts of climate change in the Alps and Fennoscandian mountains. Conservatoire Jardin Botanique, Genève, pp 121–127Google Scholar
  73. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109. doi:10.1023/A:1010632015572 CrossRefGoogle Scholar
  74. Vardabasso S (1930) Carta geologica del territorio eruttivo di Predazzo e Monzoni nelle Dolomiti di Fiemme e Fassa. 1:25.000. R. Scuola d’Ingeneria PadovaGoogle Scholar
  75. Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 411–421Google Scholar
  76. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdottir IS, Kein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103 PubMedCrossRefGoogle Scholar
  77. Walther G-R (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185. doi:10.1078/1433-8319-00076 CrossRefGoogle Scholar
  78. Walther G-R, Carraro G, Klötzli F (2001) Evergreen broad-leaved species as indicators for climate change. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change. Kluwer, New York, pp 151–162Google Scholar
  79. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a PubMedCrossRefGoogle Scholar
  80. Walther G-R, Beißner S, Burga CA (2005a) Trends in the upward shift of alpine plants. J Veg Sci 16:542–548. doi:10.1658/1100-9233(2005)16[541:TITUSO]2.0.CO;2 CrossRefGoogle Scholar
  81. Walther G-R, Berger S, Sykes MT (2005b) An ecological ‘footprint’ of climate change. Proc R Soc Lond B 272:1427–1432. doi:10.1098/rspb.2005.3119 CrossRefGoogle Scholar
  82. Wieser G (2002) The role of sapwood temperature variations within Pinus cembra on calculated stem respiration: implications for upscaling and predicted global warming. Phyton 42:1–11Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Brigitta Erschbamer
    • 1
  • Thomas Kiebacher
    • 1
  • Martin Mallaun
    • 1
  • Peter Unterluggauer
    • 1
  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations