Plant Ecology

, Volume 203, Issue 2, pp 253–261 | Cite as

Reproductive success in the Mexican rewardless Oncidium cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia glabra (Malpighiaceae)

  • Gustavo Carmona-Díaz
  • José G. García-Franco


The pollination of one plant species can be facilitated by the presence of one or more neighboring plant species and evidence has been found in some rewardless species of orchid that benefit from the presence of rewarding plant species in the neighborhood. There are two pollination mechanisms by which a non-rewarding orchid attracts pollinators and increases its reproductive success: (1) A magnetic species effect that occurs even though the flowers do not resemble those of the other species, and (2) floral mimicry where the mimic’s flower resembles that of the model plant species. Oncidium cosymbephorum is a Mexican rewardless epiphytic orchid whose flowers look like those of the rewarding shrub Malpighia glabra (Malpighiaceae). The resemblance of O. cosymbephorum to the oil-offering flowers of M. glabra attracts the same pollinators, and the fitness of the orchid is higher when M. glabra is present than when it is absent. We evaluated the facilitation by M. glabra of the orchid’s pollination for natural and artificial clumps of O. cosymbephorum close to and far from M. glabra over 4 years. Two experiments were performed at five different study sites to evaluate the effect of the presence and absence of M. glabra on the reproductive success of O. cosymbephorum. In experiment 1, we recorded fruit set production in natural and artificial monospecific clumps of the orchid, and in natural and artificial heterospecific clumps of O. cosymbephorum and M. glabra. In experiment 2, we recorded the fruit set of O. cosymbephorum at different sites where individuals grow in monospecific clumps, both before and after cultivated individuals of oil-producing M. glabra had been planted in their vicinity. Both experiments showed that the reproductive success of O. cosymbephorum was greater in the presence of M. glabra than it was in its absence. This study provides experimental evidence for the magnetic species effect. Floral similarity between O. cosymbephorum and M. glabra, should be experimentally tested to determine whether it is adaptive.


Floral mimicry Fruit set Magnetic species effect Plant–animal interaction Plant–plant interaction Pollination Pollinators 



The authors thank Drs. Juan Francisco Ornelas, Carlos Vergara, and Matthias Laska for suggestions on early drafts. Suggestions of two anonymous reviewers helped to improve the manuscript. Apolinar García-Hoyos, and Saul Hernández helped with the field work. Rosario Landgrave made the map of the study sites. Bianca Delfosse revised the English version. This study was funded by the Instituto de Ecología, A.C. (907-04-144), the Universidad Veracruzana, and the Consejo Nacional de Ciencia y Tecnología (CONACYT doctoral fellowship 124848 to GCD), and is part of the doctoral research in Ecología y Manejo de Recursos Naturales being done by GCD.


  1. Ackerman JD (1986) Mechanisms and evolution of food deceptive pollination systems in orchids. Lindleyana 1:108–113Google Scholar
  2. Alexandersson R, Ǻgren J (1996) Population size, pollinator visitation and fruit production in the deceptive orchid Calypso bulbosa. Oecologia 107:533–540. doi: 10.1007/BF00333945 CrossRefGoogle Scholar
  3. Anderson W (1979) Floral conservatism in Neotropical Malpighiaceae. Biotropica 11:219–223. doi: 10.2307/2388042 CrossRefGoogle Scholar
  4. Anderson B, Johnson SD (2006) The effects of floral mimics and models on each others’ fitness. Proc R Soc Lond B Biol Sci 273:969–974. doi: 10.1098/rspb.2005.3401 CrossRefGoogle Scholar
  5. Bierzychudek P (1981) Asclepias, Lantana and Epidendrum: a floral mimicry complex? Biotropica 13:54–58. doi: 10.2307/2388070 CrossRefGoogle Scholar
  6. Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Syst 18:343–369. doi: 10.1146/ CrossRefGoogle Scholar
  7. Carmona-Díaz G (2001) Floral mimicry between Oncidium cosymbephorum Morren (Orchidaceae) and Malpighia glabra L. (Malpighiaceae). Master of Science Thesis. Universidad Veracruzana, Xalapa, Veracruz, MexicoGoogle Scholar
  8. Castillo-Campos G, Laborde J (2004) La vegetación. In: Guevara S, Laborde J, Sánchez G (eds) Los Tuxtlas: El Paisaje de la Sierra. Instituto de Ecología A.C.. Unión Europea, Xalapa, Ver, pp 231–265Google Scholar
  9. Castillo-Campos G, Medina ME (2005) Árboles y arbustos de la Reserva Natural de La Mancha, Veracruz, México. Instituto de Ecología A.C., Xalapa, Ver, p 143Google Scholar
  10. Chase MW, Hanson L, Albert VA, Whitten WM, Williams NH (2005) Life history evolution and genome size in Subtribe Oncidiinae (Orchidaceae). Ann Bot (Lond) 95:191–199. doi: 10.1093/aob/mci012 CrossRefGoogle Scholar
  11. Cristobal-Azkarate J, Vea J, Ascencio N, Rodríguez-Luna E (2005) Biogeographical and floristic predictors of the presence and abundance of mantled howlers (Alouatta palliata mexicana) in rainforest fragments at Los Tuxtlas, Mexico. Am J Primatol 67:209–222. doi: 10.1002/ajp.20178 PubMedCrossRefGoogle Scholar
  12. Dafni A, Ivri Y (1981a) Floral mimicry between Orchis israelitica Baumann and Dafni (Orchidaceae) and Bellevalia flexuosa Boiss (Liliaceae). Oecologia 49:229–232. doi: 10.1007/BF00349193 CrossRefGoogle Scholar
  13. Dafni A, Ivri Y (1981b) The flower biology of Cephalanthera longifolia (Orchidaceae) pollen imitation and facultative floral mimicry. Plant Syst Evol 137:229–240. doi: 10.1007/BF00982788 CrossRefGoogle Scholar
  14. Feinsinger P (1987) Effect of plant species on each other’s pollination: is community structure influenced? Trends Ecol Evol 2:123–126. doi: 10.1016/0169-5347(87)90052-8 CrossRefGoogle Scholar
  15. Feldman TS, Morris WF, Wilson WG (2004) When can two plant species facilitate each other’s pollination? Oikos 105:197–207. doi: 10.1111/j.0030-1299.2004.12845.x CrossRefGoogle Scholar
  16. Gigord LDB, Macnair M, Stritesky M, Smithson A (2002) The potential for floral mimicry in rewardless orchids: an experimental study. Proc R Soc Lond B Biol Sci 269:1389–1395. doi: 10.1098/rspb.2002.2018 CrossRefGoogle Scholar
  17. Hegland SJ, Totland O (2005) Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 145:586–594. doi: 10.1007/s00442-005-0165-6 PubMedCrossRefGoogle Scholar
  18. Internicola A, Juillet N, Smithson A, Gigord LDB (2006) Experimental investigation of the effect of spatial aggregation on reproductive success in a rewardless orchid. Oecologia 150:435–441. doi: 10.1007/s00442-006-0530-0 PubMedCrossRefGoogle Scholar
  19. Internicola A, Page PA, Bernasconi G, Gigord LDB (2007) Competition for pollinator visitation between deceptive and rewarding artificial inflorescences: an experimental test of the effects of floral colour similarity and spatial mingling. Funct Ecol 21(5):864–872. doi: 10.1111/j.1365-2435.2007.01303.x CrossRefGoogle Scholar
  20. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev Camb Philos Soc 81:219–235. doi: 10.1017/S1464793105006986 PubMedCrossRefGoogle Scholar
  21. Jiménez R (1993) Los géneros Lophiaris y Oncidium en México. Primer Simposio Internacional de Orquideología, Xalapa, Veracruz, MéxicoGoogle Scholar
  22. Johnson SD (1994) Evidence for Batesian mimicry in a butterfly-pollinated orchid. Biol J Linn Soc Lond 53:91–104Google Scholar
  23. Johnson SD (2000) Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behavior. Biol J Linn Soc Lond 71:119–132CrossRefGoogle Scholar
  24. Johnson SD, Nilsson LA (1999) Pollen carryover, geitonogamy, and the evolution of deceptive pollination system in orchids. Ecology 80:2607–2619CrossRefGoogle Scholar
  25. Johnson SD, Peter CI, Nilsson LA, Ǻgren J (2003a) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:2919–2927. doi: 10.1890/02-0471 CrossRefGoogle Scholar
  26. Johnson SD, Alexandersson R, Linder HP (2003b) Experimental and phylogenetic evidence for floral mimicry in a guild of fly-pollinated plants. Biol J Linn Soc Lond 80:289–304. doi: 10.1046/j.1095-8312.2003.00236.x CrossRefGoogle Scholar
  27. Juillet N, Gonzalez MA, Page PA, Gigord LDB (2007) Pollination of the European food-deceptive Traunsteinera globosa (Orchidaceae): the importance of nectar-producing neighbouring plants. Plant Syst Evol 265:123–129. doi: 10.1007/s00606-006-0507-9 CrossRefGoogle Scholar
  28. Lammi A, Kuitunen M (1995) Deceptive pollination of Dactylorhiza incarnata: an experimental test of the magnet species hypothesis. Oecologia 101:500–5003. doi: 10.1007/BF00329430 CrossRefGoogle Scholar
  29. Laverty TM (1992) Plant interaction for pollinator visits: a test of the magnet species effect. Oecologia 89:502–508Google Scholar
  30. Moeller DA (2004) Facilitative interactions among plants via shared pollinators. Ecology 85:3289–3301. doi: 10.1890/03-0810 CrossRefGoogle Scholar
  31. Neiland MR, Wilcock C (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671. doi: 10.2307/2446499 CrossRefGoogle Scholar
  32. Rathke BJ (1988) Interactions for pollination among co-flowering shrubs. Ecology 69:446–457. doi: 10.2307/1940443 CrossRefGoogle Scholar
  33. Renner SS (2006) Rewardless flowers in the Angiosperms and the role of insect cognition in their evolution. In: Waser NM, Olerton J (eds) Plant pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 123–144Google Scholar
  34. Roy BA, Widmer A (1999) Floral mimicry: a fascinating yet poorly understood phenomenon. Trends Plant Sci 8:325–330. doi: 10.1016/S1360-1385(99)01445-4 CrossRefGoogle Scholar
  35. Sabat AM, Ackerman JD (1996) Fruit set in a deceptive orchid: the effect of flowering phenology, display size, and local abundance. Am J Bot 83:1181–1186. doi: 10.2307/2446202 CrossRefGoogle Scholar
  36. Serio-Silva JC, Rico-Gray V, Hernández-Salazar LT, Espinosa-Gómez R (2002) The role of Ficus (Moraceae) in the diet and nutrition of a troop of Mexican howler monkeys Alouatta palliata mexicana, released on an island in Southern Veracruz, Mexico. J Trop Ecol 18:913–928. doi: 10.1017/S0266467402002596 CrossRefGoogle Scholar
  37. Thomson JD (1978) Effects of stand composition on insect visitation in two-species mixtures of Hieracium. Am Midl Nat 100:431–440. doi: 10.2307/2424843 CrossRefGoogle Scholar
  38. Van der Pijl L, Dodson CH (1966) Orchid flowers, their pollination and evolution. University of Miami Press, Coral GablesGoogle Scholar
  39. Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem N Y Bot Gard 55:130–142Google Scholar
  40. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. doi: 10.2307/2265575 CrossRefGoogle Scholar
  41. Zar JH (1986) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gustavo Carmona-Díaz
    • 1
    • 2
  • José G. García-Franco
    • 1
  1. 1.Departamento Ecología FuncionalInstituto de Ecología A.CXalapaMexico
  2. 2.Facultad de Ingeniería en Sistemas de Producción AgropecuariaUniversidad Veracruzana, Campus AcayucanMéxico

Personalised recommendations