Plant Ecology

, Volume 203, Issue 2, pp 195–205

Biogenic volatile organic compounds from an invasive species: impacts on plant–plant interactions

  • Jacob N. Barney
  • Jed P. Sparks
  • Jim Greenberg
  • Thomas H. Whitlow
  • Alex Guenther
Article

Abstract

Invasive plant species impact both ecosystems and economies worldwide, often by displacing native biota. Many plant species exude/emit compounds into the surrounding environment with minor consequences in their native habitat due to a long coevolutionary history. However, upon introduction to ecosystems naïve to these compounds, unpredictable interactions can manifest. The majority of the putative allelochemicals studied have been root exudates, despite the large number of plant species that emit volatile organic compounds. We quantified the concentrations and ecological consequences of volatile monoterpenes from the North American invasive perennial Artemisia vulgaris. Ambient monoterpene-mixing ratios inside an A. vulgaris canopy were 0.02–4.15 ppbv in May and 0.01–0.05 ppbv in August, but were negligible (below instrument detection limit of 0.01 ppbv) 10 m away. Foliar disturbance increased total monoterpene concentration to a maximum of 27 ppbv. However, this level remains 1,000-fold lower than that shown to be phytotoxic to sensitive species in laboratory assays. In contrast, soil monoterpene concentrations were >74-fold higher inside [≤35 ± 11 ng g−1 (SDW)] and 19-fold higher at the edge [9 ± 3 ng g−1 (SDW)], compared to outside the A. vulgaris stand [0.48 ± 0.05 ng g−1 (SDW)]. A common native competitor species, Solidago canadensis, grown in pots and resident soil in situ yielded up to 50% less aboveground biomass inside as compared to outside the A. vulgaris stand. Activated carbon had no effect on greenhouse-grown S. canadensis performance when grown with A. vulgaris, suggesting root-derived exudates are not responsible for field observations. Results from this study suggest that A. vulgaris-derived monoterpenes have little direct activity in their volatile gaseous state, but are concentrated in the soil matrix within and bordering the A. vulgaris stand, thereby reducing interspecific performance and potentially fostering the subsequent local invasion of this species.

Keywords

Allelopathy Artemisia vulgaris Biogenic volatile organic compound Biological invasion Monoterpene Mugwort Solidago canadensis 

Abbreviations

VOC

Volatile organic compound

BVOC

Biogenic volatile organic compound

References

  1. Abrahim D, Braguini WL, Kelmer-Bracht AM et al (2000) Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 26:611–624. doi:10.1023/A:1005467903297 CrossRefGoogle Scholar
  2. Arey J, Crowley DE, Crowley M et al (1995) Hydrocarbon emissions from plants in California’s South Coast Air Basin. Atmos Environ 29:2977–2988. doi:10.1016/1352-2310(95)00137-N CrossRefGoogle Scholar
  3. Bais HP, Vepachedu R, Gilroy S et al (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380. doi:10.1126/science.1083245 PubMedCrossRefGoogle Scholar
  4. Barney JN, DiTommaso A (2003) The biology of Canadian weeds. 118. Artemisia vulgaris L. Can J Plant Sci 83:205–215Google Scholar
  5. Barney JN, DiTommaso A, Weston LA (2005a) Differences in invasibility of two contrasting habitats and invasiveness of two mugwort (Artemisia vulgaris) populations. J Appl Ecol 42:567–576. doi:10.1111/j.1365-2664.2005.01030.x CrossRefGoogle Scholar
  6. Barney JN, Hay AG, Weston LA (2005b) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265. doi:10.1007/s10886-005-1339-8 PubMedCrossRefGoogle Scholar
  7. Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biol Invasions 10:259–272. doi:10.1007/s10530-007-9127-8 CrossRefGoogle Scholar
  8. Barney JN, Whitlow TH, DiTommaso A (2008) Evolution of an invasive phenotype: shift to belowground dominance and enhanced competitive ability in the introduced range. Plant Ecol . doi:10.1007/s11258-008-9481-3 Google Scholar
  9. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. doi:10.1023/A:1026290508166 CrossRefGoogle Scholar
  10. Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889. doi:10.2307/2261425 CrossRefGoogle Scholar
  11. Bossdorf O, Augue H, Lafuma L et al (2005) Phenotypic and genotypic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi:10.1007/s00442-005-0070-z PubMedCrossRefGoogle Scholar
  12. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521 PubMedCrossRefGoogle Scholar
  13. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443CrossRefGoogle Scholar
  14. Callaway RM, Ridenour WM, Laboski T et al (2005) Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol 93:576–583. doi:10.1111/j.1365-2745.2005.00994.x CrossRefGoogle Scholar
  15. Callaway RM, Thelen GC, Rodriguez A et al (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi:10.1038/nature02322 PubMedCrossRefGoogle Scholar
  16. Charlwood BV, Charlwood KA (1991) Monoterpenoids. In: Charlwood BV, Banthorpe DV (eds) Terpenoids. Academic Press, New York, NY, p 565Google Scholar
  17. Greenberg JP, Guenther A, Zimmerman P et al (1999) Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer. Atmos Environ 33:855–867. doi:10.1016/S1352-2310(98)00302-1 CrossRefGoogle Scholar
  18. Greenberg JP, Guenther A, Petron G et al (2004) Biogenic VOC emissions from forested Amazonian landscapes. Glob Change Biol 10:1–12. doi:10.1111/j.1365-2486.2004.00758.x CrossRefGoogle Scholar
  19. Guenther A, Greenberg J, Harley P et al (1996) Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiol 16:17–24PubMedGoogle Scholar
  20. Guenther A, Hewitt CN, Erickson D et al (1995) A global model of natural volatile organic compound emission. J Geophys Res 100:8873–8892. doi:10.1029/94JD02950 CrossRefGoogle Scholar
  21. Hayward S, Muncey RJ, James AE et al (2001) Monoterpene emissions from soil in a Sitka spruce forest. Atmos Environ 35:4081–4087. doi:10.1016/S1352-2310(01)00213-8 CrossRefGoogle Scholar
  22. Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014 CrossRefGoogle Scholar
  23. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi:10.1038/417067a PubMedCrossRefGoogle Scholar
  24. Kovacevic N, Pavlovic M, Menkovic N et al (2002) Composition of the essential oil from roots and rhizomes of Valeriana pancicii Halácsy & Bald. Flavour Fragr J 17:355–357. doi:10.1002/ffj.1100 CrossRefGoogle Scholar
  25. Kulmatiski A, Beard KH (2006) Activated carbon as a restoration tool: potential for control of invasive plants in abandoned agricultural fields. Restor Ecol 14:251–257. doi:10.1111/j.1526-100X.2006.00127.x CrossRefGoogle Scholar
  26. Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280. doi:10.1007/BF02059809 CrossRefGoogle Scholar
  27. Lerdau M, Gray D (2003) Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol 157:199–211. doi:10.1046/j.1469-8137.2003.00673.x CrossRefGoogle Scholar
  28. Lerdau M, Guenther A, Monson R (1997) Plant production and emission of volatile organic compounds. Bioscience 47:373. doi:10.2307/1313152 CrossRefGoogle Scholar
  29. Maffei M, Chialva F, Sacco T (1989) Glandular trichomes and essential oils in developing peppermint leaves I. Variation of peltate trichome number and terpene distribution within leaves. New Phytol 111:707–716. doi:10.1111/j.1469-8137.1989.tb02366.x CrossRefGoogle Scholar
  30. Mitchell CG, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627. doi:10.1038/nature01317 PubMedCrossRefGoogle Scholar
  31. Muller CH (1965) Inhibitory terpenes volatilized from Salvia shrubs. J Torrey Bot Soc 92:38–45Google Scholar
  32. Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473. doi:10.1126/science.143.3605.471 PubMedCrossRefGoogle Scholar
  33. Newman EI (1978) Allelopathy: adaptation or accident? In: Harborne JB (ed) Biochemical aspects of plant and animal coevolution. Academic Press, New York, NY, p 435Google Scholar
  34. Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404. doi:10.1016/j.tree.2004.06.002 PubMedCrossRefGoogle Scholar
  35. Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288. doi:10.3732/ajb.91.2.285 CrossRefGoogle Scholar
  36. Qin B, Lau JA, Kopshever J et al (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biol Invasions 9:897–907. doi:10.1007/s10530-007-9089-x CrossRefGoogle Scholar
  37. Siemens TJ, Blossey B (2007) An evaluation of mechanisms preventing growth and survival of two native species in invasive Bohemian knotweed (Fallopia × bohemica, Polygonaceae). Am J Bot 94:776–783. doi:10.3732/ajb.94.5.776 CrossRefGoogle Scholar
  38. Simms EL, Rausher MD (1987) Costs and benefits of plant resistance to herbivory. Am Nat 130:570–581. doi:10.1086/284731 CrossRefGoogle Scholar
  39. van Roon A, Parsons JR, Krap L, Govers HAJ (2005) Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content. Chemosphere 61:129–138. doi:10.1016/j.chemosphere.2005.02.082 PubMedCrossRefGoogle Scholar
  40. Vivanco JM, Bais HP, Stermitz FR et al (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292. doi:10.1111/j.1461-0248.2004.00576.x CrossRefGoogle Scholar
  41. Weaver T, Klarich D (1976) Toxic effects of volatile exudates from Artemisia tridentata Nutt. on soil microbes. Proc Mont Acad Sci 36:80–85Google Scholar
  42. Weidenhamer JD, Macias FA, Fischer NH et al (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807. doi:10.1007/BF00982309 CrossRefGoogle Scholar
  43. Whittaker RH, Feeny PP (1971) Allelochemicals: chemical interactions between species. Science 171:757–770. doi:10.1126/science.171.3973.757 PubMedCrossRefGoogle Scholar
  44. Williamson M, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. doi:10.1016/0006-3207(96)00025-0 CrossRefGoogle Scholar
  45. Yun KW, Kil B-S, Han DM (1993) Phytotoxic and antimicrobial activity of volatile constituents of Artemisia princeps var. orientalis. J Chem Ecol 19:2757–2766. doi:10.1007/BF00980705 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jacob N. Barney
    • 1
    • 2
  • Jed P. Sparks
    • 3
  • Jim Greenberg
    • 4
  • Thomas H. Whitlow
    • 1
  • Alex Guenther
    • 4
  1. 1.Department of HorticultureCornell UniversityIthacaUSA
  2. 2.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  3. 3.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  4. 4.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations