Advertisement

Plant Ecology

, 203:45 | Cite as

Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition

  • Šárka CimalováEmail author
  • Zdeňka Lososová
Article

Abstract

Factors determining changes in species composition of arable field weed vegetation in the northeastern part of the Czech Republic were studied. Gradsect sampling, i.e. a priori stratified selection of sampling sites, was used for the field research. Using this method, a data set of 174 vegetation plots, covering a whole range of basic environmental characteristics in the study area, was compiled in 2001–2003. A set of environmental variables (altitude, annual precipitation, mean annual temperature, soil type, soil pH and crop type) together with date of sampling was obtained for each plot. Ordination methods were used to determine the effects of variables on arable weed composition. For each variable, the gross and net effect on weed species composition were calculated. All variables considered in this study had a significant effect on weed species composition and explained 7.25% of the total variation in species data. Major changes in weed species composition in the study area were associated with different crop types. The second most important gradient in the variability of weed vegetation in the study area was associated with altitudinal and climatic changes followed by seasonal changes and different soil types and pH. Our results show that on a regional scale, the relative importance of different crop types and their associated management on changes in arable weed species composition is higher than the relative importance of climatic variables. The relative importance of climatic variables decreases with their decreasing length of gradient.

Keywords

Arable land Climate Crop Gradient analysis Seasonal dynamics Soil type 

Notes

Acknowledgements

We thank Milan Chytrý for helpful comments on the manuscript. This work was supported by the project MSM 0021622416 of the Ministry of Education of the Czech Republic.

References

  1. Andersson TN, Milberg P (1998) Weed flora and the relative importance of site, crop, crop rotation and nitrogen. Weed Sci 46:30–38Google Scholar
  2. Andreasen C, Streibig JC, Haas H (1991) Soil properties affecting the distribution of 37 weed species in Danish fields. Weed Res 31:181–187. doi: 10.1111/j.1365-3180.1991.tb01757.x CrossRefGoogle Scholar
  3. Andreasen C, Stryhn H, Streibig JC (1996) Decline of the flora in Danish arable fields. J Appl Ecol 33:619–626. doi: 10.2307/2404990 CrossRefGoogle Scholar
  4. Anioł-Kwiatkowska J, Kącki Z (2006) Species diversity of segetal plant communities in the early neolithic settlement area of the Ślęža landscape park. Acta Soc Bot Pol 75:257–262Google Scholar
  5. Anonymous (1971) Mapa půdních asociací 1 : 500 000 (Map of soil associations 1 : 500 000). Geografický ústav ČSAV, BrnoGoogle Scholar
  6. Anonymous (1988) FAO-UNESCO, Soil map of the world. FAO, RomaGoogle Scholar
  7. Austin MP, Heyligers PC (1991) New approach to vegetation survey design: gradsect sampling. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, MelbourneGoogle Scholar
  8. Borhidi A (2003) dsMagyarország növénytársulásai (Plant communities of Hungary). Akadémiai Kiadó, BudapestGoogle Scholar
  9. Chytrý M, Tichý L, Roleček J (2003) Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38:429–442. doi: 10.1007/BF02803250 CrossRefGoogle Scholar
  10. Dale MRT, Thomas AG, John EA (1992) Environmental factors including management practices as correlates of weed community composition in spring seeded crops. Can J Bot 70:1931–1939. doi: 10.1139/b92-240 CrossRefGoogle Scholar
  11. Ellenberg H (1988) Vegetation Ecology of central Europe, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  12. Ellenberg H, Weber HE, Düll R, Wirth W, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. Scripta Geobot 18:1–258Google Scholar
  13. Erviö R, Hyvärinen S, Erviö L-R, Salonen J (1994) Soil properties affecting weed distribution in spring cereal and vegetable fields. Agric Sci Finl 3:497–504Google Scholar
  14. Ewald J (2003) The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366. doi: 10.1007/BF02803244 CrossRefGoogle Scholar
  15. Gabriel D, Thies C, Tscharntke T (2005) Local diversity of arable weeds increases with landscape complexity. Perspect Plant Ecol Evol Syst 7:85–93. doi: 10.1016/j.ppees.2005.04.001 CrossRefGoogle Scholar
  16. Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021. doi: 10.1890/1051-0761(2006)016[2011:BDADSS]2.0.CO;2 PubMedCrossRefGoogle Scholar
  17. Gerowitt B (2003) Development and control of weeds in arable farming systems. Agric Ecosyst Environ 98:247–254. doi: 10.1016/S0167-8809(03)00084-7 CrossRefGoogle Scholar
  18. Gibson RH, Pearce S, Morris RJ, Symondson WOC, Memmott J (2007) Plant diversity and land use under organic and conventional agriculrure: a whole-farm approach. J Appl Ecol 44(4):792–803. doi: 10.1111/j.1365-2664.2007.01292.x CrossRefGoogle Scholar
  19. Gigon A (1987) A hierachic approach in causal ecosystem analysis: The calcifuge-calcicole problem in alpine grasslands. Ecol Stud 61:228–244Google Scholar
  20. GISAT (1997) Satellite image interpretation, CORINE Land coverGoogle Scholar
  21. Glemnitz M, Czimber G, Radics L, Hoffmann J (2000) Weed flora composition along a north-south climate gradient in Europe. Acta Agronom Ovariensis 42:155–169Google Scholar
  22. Hallgren E, Palmer MW, Milberg P (1999) Data diving with cross-validation: an investigation of broad-scale gradients in Swedish weed communities. J Ecol 87:1037–1051. doi: 10.1046/j.1365-2745.1999.00413.x CrossRefGoogle Scholar
  23. Haveman R, Schaminée JHJ, Weeda EJ (1998) Stellarietea mediae. In: Schaminée JHJ, Weeda EJ, Westhoff V (eds) De vegetatie van Nederland. Deel 4. Plantengemeenschappen van de kust en van binnenlandse pioniermilieus (The vegetation of the Netherlands, vol. 4. Plant communities of the coast and of inland pioneer habitats). Opulus Press, Uppsala, pp 199–246Google Scholar
  24. Holzner W (1973) Die Ackerunkrautvegetation Niederösterreichs. Mitt Bot Arb Gem Oberosterr Landesmus 5:1–157Google Scholar
  25. Holzner W (1978) Weed species and weed communities. Vegetatio 38:13–20. doi: 10.1007/BF00141295 CrossRefGoogle Scholar
  26. Holzner W, Immonen R (1982) Europe: an overview. In: Holzner W, Numata M (eds) Biology and ecology of weeds, Geobotany 2. W. Junk, The Hague, pp 203–226Google Scholar
  27. Hüppe J, Hofmeister H (1990) Syntaxonomische Fassung und Übersicht über die Ackerunkrautgesellschaften der Bundesrepublik Deutschland. Ber Reinh-Tuxen Ges 2:61–81Google Scholar
  28. Hyvönen T, Salonen J (2002) Weed species diversity and community composition in cropping practices at two intensity levels–a six-year experiment. Plant Ecol 159:73–81. doi: 10.1023/A:1015580722191 CrossRefGoogle Scholar
  29. Hyvönen T, Holopainen J, Tiainen J (2005) Detecting the spatial component of variation in the weed community at the farm scale with variation partitioning by canonical correspondence analysis. Weed Res 45:48–56. doi: 10.1111/j.1365-3180.2004.00430.x CrossRefGoogle Scholar
  30. Jarolímek I, Zaliberová M, Mucina L, Mochnacký S (1997) Rastlinné spoločenstvá Slovenska. 2. Synantropná vegetácia (Plant communities of Slovakia. 2. Synanthropic vegetation). Veda, BratislavaGoogle Scholar
  31. Kropáč Z, Hadač E, Hejný S (1971) Some remarks on the synecological and syntaxonomic problems of weed plant communities. Preslia 43:139–153Google Scholar
  32. Kubát K, Hrouda L, Chrtek J Jr, Kaplan Z, Kirschner J, Štěpánek J (2002) Klíč ke květeně České republiky (Key to the Flora of the Czech Republic). Academia, PrahaGoogle Scholar
  33. Lososová Z (2003) Estimating past distribution of vanishing weed vegetation in South Moravia. Preslia 75:71–79Google Scholar
  34. Lososová Z (2004) Weed vegetation in southern Moravia (Czech Republic): a formalized phytosociological classification. Preslia 76:65–85Google Scholar
  35. Lososová Z, Danihelka J, Chytrý M (2003) Seasonal dynamics and diversity of weed vegetation in tilled and mulched vineyards. Biologia 58:49–57Google Scholar
  36. Lososová Z, Chytrý M, Cimalová Š, Kropáč Z, Otýpková Z, Pyšek P et al (2004) Weed vegetation of arable land in central Europe: gradients in diversity and species composition. J Veg Sci 15:415–422. doi: 10.1658/1100-9233(2004)015[0415:WVOALI]2.0.CO;2 Google Scholar
  37. Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P et al (2006a) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81. doi: 10.1016/j.ppees.2006.07.001 CrossRefGoogle Scholar
  38. Lososová Z, Chytrý M, Cimalová Š, Otýpková Z, Pyšek P, Tichý L (2006b) Classification of weed vegetation of arable land in the Czech Republic and Slovakia. Folia Geobot 41:259–273. doi: 10.1007/BF02904941 CrossRefGoogle Scholar
  39. Lososová Z, Chytrý M, Kühn I (2008) Plant attributes determining the regional abundance of weeds on central European arable land. J Biogeogr 35:177–187Google Scholar
  40. McCloskey M, Firbank LG, Watkinson AR, Webb DJ (1996) The Dynamics of Experimental Arable Weed Communities under Different Management Practices. J Veg Sci 7:799–808. doi: 10.2307/3236458 CrossRefGoogle Scholar
  41. Mucina L (1993) Stellarietea mediae. In: Mucina L, Grabherr G, Ellmauer T (eds) Die Pflanzengesellschaften Österreichs. Teil I. Anthropogene Vegetation. Gustav Fischer Verlag, Jena, pp 110–168Google Scholar
  42. Neuhäuslová Z et al (1998) Mapa potenciální přirozené vegetace České republiky (Map of Potential Natural Vegetation of the Czech Republic). Academia, PrahaGoogle Scholar
  43. Pinke G (2004) Letzte Vorkommen von Caucalidion-Arten im Nordwesten Ungarns. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. Sonderheft 19:73–82Google Scholar
  44. Pott R (1995) Die Pflanzengesellschaften Deutschlands, 2nd edn. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  45. Pyšek P, Lepš J (1991) Response of a weed community to nitrogen fertilization: a multivariate analysis. J Veg Sci 2:237–244. doi: 10.2307/3235956 CrossRefGoogle Scholar
  46. Pyšek P, Jarošík V, Chytrý M, Kropáč Z, Tichý L, Wild J (2005a) Alien plants in temperate weed communities: Prehistoric and recent invaders differ in habitat affinities. Ecology 86:772–785. doi: 10.1890/04-0012 CrossRefGoogle Scholar
  47. Pyšek P, Jarošík V, Kropáč Z, Chytrý M, Wild J, Tichý L (2005b) Effect of abiotic factors on species richness and cover in Central European weed communities. Agric Ecosyst Environ 109:1–8. doi: 10.1016/j.agee.2005.02.018 CrossRefGoogle Scholar
  48. Quitt E (1975) Mapa klimatických oblastí ČSR 1:500 000 (Map of Czechoslovak climatic regions 1 : 500 000). Geografický ústav ČSAV, BrnoGoogle Scholar
  49. Rennwald E (2002) Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands. Schriftenr Vegetationsk 35:1–800Google Scholar
  50. Ries C (1992) Überblick über die Ackerunkrautvegetation Österreichs und ihre Entwicklung in neuerer. Zeit Diss Bot 187:1–188Google Scholar
  51. Salonen J (1993) Weed infestation and factors affecting weed incidence in spring cereals in Finland–a multivariate approach. Agric Sci Finl 2:525–536Google Scholar
  52. Salonen J, Hyvönen T, Jalli H (2001) Weed flora in organically grown spring cereals in Finland. Agric Food Sci Finl 10:231–242Google Scholar
  53. Schubert R, Hilbig W, Klotz S (2001) Bestimmungsbuch der Pflanzengesellschaften Deutschlands. Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  54. Šilc U, Čarni A (2007) Formalized classification of the weed vegetation of arable land in Slovenia. Preslia 79:283–302Google Scholar
  55. Skalický V (1988) Regionálně fytogeografické členění (Regional phytogeographical division). In: Hejný S, Slavík B (eds) Květena České socialistické republiky, vol 1. Academia, Praha, pp 103–121Google Scholar
  56. Sutcliffe OL, Kay QON (2000) Changes in the arable flora of central southern England since the 1960s. Biol Conserv 93:1–8. doi: 10.1016/S0006-3207(99)00119-6 CrossRefGoogle Scholar
  57. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination Version 4.5 Microcomputer Power. Ithaca, NYGoogle Scholar
  58. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. doi: 10.1658/1100-9233(2002)013[0451:JSFVC]2.0.CO;2 CrossRefGoogle Scholar
  59. Vesecký A, Petrovič Š, Briedoň V, Karský V (eds) (1958) Atlas podnebí Československé republiky (The Climate Atlas of the Czech Republic). Ústřední správa geodesie a kartografie, PrahaGoogle Scholar
  60. Walter AM, Christensen S, Simmelsgaard SE (2002) Spatial correlation between species densities and soil properties. Weed Res 42:26–38. doi: 10.1046/j.1365-3180.2002.00259.x CrossRefGoogle Scholar
  61. Westhoff V, van den Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. W. Junk, The Hague, pp 289–399Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Biology, Faculty of EducationMasaryk UniversityBrnoCzech Republic

Personalised recommendations