Advertisement

Plant Ecology

, Volume 196, Issue 1, pp 61–83 | Cite as

Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia

  • Milan ChytrýEmail author
  • Jiří Danihelka
  • Svatava Kubešová
  • Pavel Lustyk
  • Nikolai Ermakov
  • Michal Hájek
  • Petra Hájková
  • Martin Kočí
  • Zdenka Otýpková
  • Jan Roleček
  • Marcela Řezníčková
  • Petr Šmarda
  • Milan Valachovič
  • Denis Popov
  • Ivan Pišút
Article

Abstract

Southern Siberian mountain ranges encompass strong climatic contrasts from the relatively oceanic northern foothills to strongly continental intermountain basins in the south. Landscape-scale climatic differences create vegetation patterns, which are analogous to the broad-scale vegetation zonation over large areas of northern Eurasia. In their southern, continental areas, these mountains harbour forest types which potentially resemble the full-glacial forests recently reconstructed for Central Europe. To identify forest vegetation–environment relationships in the southern Siberian mountain ranges, forest vegetation of the Western Sayan Mountains was sampled on a 280 km transect running from the northern foothills with oceanic climatic features to the continental Central Tuvinian Basin in the south. Based on the species composition, vegetation was classified into hemiboreal forests, occurring at drier and summer-warm sites with high-pH soil, and taiga, occurring at wetter, summer-cool sites with acidic soil. Hemiboreal forests included Betula pendula-Pinus sylvestris mesic forest, Larix sibirica dry forest and Pinus sylvestris dry forest. Taiga included Abies sibirica-Betula pendula wet forest, Abies sibirica-Pinus sibirica mesic forest and Pinus sibirica-Picea obovata continental forest. Hemiboreal forests were richer in vascular plant species, while taiga was richer in ground-dwelling cryptogams. Vegetation–environment relationships were analysed by indirect and direct ordination. Winter and summer temperatures and precipitation exerted a dominant influence on species composition. Soil pH was also an important correlate of species composition, but this factor itself was probably controlled by precipitation. At a more local scale, the main source of variation in species composition was topography, producing landscape patterns of contrasting plant communities on slopes of different aspects and valley bottoms. The response of tree species to major environmental factors was expressed with Huisman–Olff–Fresco models. Larix sibirica appeared to be most resistant to drought and winter frosts, Pinus sibirica was adapted to low temperatures both in winter and summer, and Picea obovata had an intermediate response to climate. Betula pendula, Pinus sylvestris and Populus tremula were associated with the warmest sites with intermediate precipitation, while Abies sibirica was the most moisture-demanding species, sensitive to deep winter frosts.

Keywords

Classification Hemiboreal forest Ordination Soil pH Species response curve Taiga Vegetation–environment relationships 

Notes

Acknowledgements

We thank David Zelený and Lubomír Tichý for software implementation of the HOF method and the local staff of our expeditions for their extensive support during the fieldwork. Our herbarium specimens were revised by Dirk Albach (Veronica), Libor Ekrt (pteridophytes), Nikolai Friesen (Allium and Delphinium), Jan Kirschner (Juncaceae), Jaroslav Koblížek (Salix), Marina Olonova (Poa), Radomír Řepka (Carex) and Jiří Soják (Potentilla). This research was supported by grant no. IAA6163303 from the Grant Agency of the Academy of Sciences of the Czech Republic and long-term research plans MSM0021622416 and AVOZ60050516; N. Ermakov was also supported by grant RFBR 06-04-48971.

References

  1. Alekhin VV (1951) Rastitel’nost’ SSSR v osnovnykh zonakh (Vegetation of the USSR in the main zones). Sovetskaya nauka, MoskvaGoogle Scholar
  2. Andreev M, Kotlov Yu, Makarova I (1996) Checklist of lichens and lichenicolous fungi of the Russian Arctic. Bryologist 99:137–169CrossRefGoogle Scholar
  3. Anenkhonov OA, Chytrý M (1998) Syntaxonomy of vegetation of the Svyatoi Nos Peninsula, Lake Baikal. 2. Forests and krummholz in comparison with other regions of northern Buryatia. Folia Geobot 33:31–75Google Scholar
  4. Austin MP, Heyligers PC (1989) Vegetation survey design for conservation: gradsect sampling of forests in Northeast New South Wales. Biol Conserv 50:13–32CrossRefGoogle Scholar
  5. Berglund BE, Birks HJB, Ralska-Jasiewiczowa M et al (1996) Palaeoecological events during the last 15 000 years. Wiley, ChichesterGoogle Scholar
  6. Cherepanov SK (1995) Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (Vascular plants of Russia and adjacent countries). Mir i sem’ya-95, Sankt-PeterburgGoogle Scholar
  7. Chytrý M, Anenkhonov OA, Danihelka J (1995) Plant communities of the Bol’šoj Čivyrkuj River Valley, Barguzinskij Range, East Siberia. Phytocoenologia 25:399–434Google Scholar
  8. Chytrý M, Danihelka J, Ermakov N et al (2007) Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Glob Ecol Biogeogr, doi: 10.1111/j.1466-8238.2007.00320.xGoogle Scholar
  9. Chytrý M, Tichý L, Holt J et al (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  10. Dulamsuren C, Hauck M, Mühlenberg M (2005a) Vegetation at the taiga forest-steppe borderline in the western Khentey Mountains, northern Mongolia. Ann Bot Fenn 42:411–426Google Scholar
  11. Dulamsuren C., Hauck M, Mühlenberg M (2005b) Ground vegetation in the Mongolian taiga forest-steppe ecotone does not offer evidence for the human origin of grasslands. Appl Veg Sci 8:149–154CrossRefGoogle Scholar
  12. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen, 5th edn. Ulmer, StuttgartGoogle Scholar
  13. Ermakov N (1995) Grass forest classification of southern Siberia and Mongolia. Coll Phytosoc 23:259–276Google Scholar
  14. Ermakov N (1998) The Altaian relict subnemoral forest belt and the vegetation of pre-Pleistocene mountainous landscapes. Phytocoenologia 28:31–44Google Scholar
  15. Ermakov NB (2003) Raznoobrazie boreal’noi rastitel’nosti severnoi Azii. Kontinental’nye gemiboreal’nye lesa. Klassifikatsiya i ordinatsiya (Diversity of boreal vegatation of northern Asia. Continental hemiboreal forests. Classification and ordination). Izdatel’stvo SO RAN, NovosibirskGoogle Scholar
  16. Ermakov NB, Korolyuk AYu, Lashchinskii NN Jr (1991) Floristicheskaya klassifikatsiya mezofilnykh travyanykh lesov yuzhnoi Sibiri (Floristic classification of the mesophilous herb-rich forests of southern Siberia). Tsentral’nyi Sibirskii Botanicheskii Sad, NovosibirskGoogle Scholar
  17. Ermakov N, Dring J, Rodwell J (2000) Classification of continental hemiboreal forests of North Asia. Braun-Blanquetia 28:1–131Google Scholar
  18. Ermakov N, Cherosov M, Gogoleva P (2002) Classification of ultracontinental boreal forests in Central Yakutia. Folia Geobot 37:419–440CrossRefGoogle Scholar
  19. Ermakov N, Chytrý M, Valachovič M (2006) Vegetation of the rock outcrops and screes in the forest-steppe and steppe belts of the Altai and Western Sayan Mts., southern Siberia. Phytocoenologia 36:509–545CrossRefGoogle Scholar
  20. Finzi AC, Canham CD, van Breemen N (1998) Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecol Appl 8:447–454Google Scholar
  21. Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. John Wiley & Sons, New YorkGoogle Scholar
  22. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA). Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Users manual and program documentation, Version 2.0. Simon Fraser University, Burnaby, Institute of Ecosystem Studies, MillbrookGoogle Scholar
  23. Frenzel B, Pécsi M, Velichko AA (eds) (1992) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. Geographical Research Institute, Budapest, Gustav Fischer Verlag, StuttgartGoogle Scholar
  24. Gidrometeoizdat (1966–1970) Spravochnik po klimatu SSSR (Reference books on the climate of the USSR). Gidrometeoizdat, LeningradGoogle Scholar
  25. Gunin PD, Vostokova EA, Dorefeyuk NI et al (1999) Vegetation dynamics of Mongolia. Kluwer, DordrechtGoogle Scholar
  26. Hämet-Ahti L (1981) The boreal zone and its biotic subdivision. Fennia 159:69–75Google Scholar
  27. Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, AmsterdamGoogle Scholar
  28. Hilbig W (2003) Forest distribution and retreat in the forest steppe ecotone of Mongolia. Marburger Geogr Schr 135:171–178Google Scholar
  29. Hill MO (1979) TWINSPAN – A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, IthacaGoogle Scholar
  30. Hill MO, Gauch HG (1980) Detrended correspondence analysis – an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  31. Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models for species response analysis. J Veg Sci 4:37–46CrossRefGoogle Scholar
  32. Ignatov MS, Afonina OM (eds) (1992) Check-list of mosses of the former USSR. Arctoa 1:1–58Google Scholar
  33. Jankovská V, Chromý P, Nižnianská M (2002) Šafárka – first palaeobotanical data of the character of Last Glacial vegetation and landscape in the West Carpathians (Slovakia). Acta Palaeobot 42:39–50Google Scholar
  34. Korotkov K, Ermakov N (1999) Waldpflanzensoziologie im Bereich der ehemaligen UdSSR: Geschichte, aktueller Stand und Prognose. Phytocoenosis N.S. 11, Suppl Cartogr Geobot 11:103–122Google Scholar
  35. Lavrenko EM, Sochava VB (eds) (1956) Rastitel’nyi pokrov SSSR. Poyasnitel’nyi tekst k „Geobotanicheskoi karte SSSR” (Plant cover of the USSR. Explanatory text for the “Geobotanical map of the USSR”). Izdatel’stvo Akademii nauk SSSR, Moskva, LeningradGoogle Scholar
  36. Malyshev L (1993) Ecological background of the floristic diversity in northern Asia. Fragm Flor Geobot Suppl 2:331–342Google Scholar
  37. Malyshev LI, Peshkova GA (eds) (1993) Flora Sibiri. Vol. 6. Portulacaceae–Ranunculaceae. Nauka, NovosibirskGoogle Scholar
  38. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  39. Meusel H, Jäger EJ, Weinert E et al (1965–1992) Vergleichende Chorologie der zentraleuropäischen Flora I–III. Gustav Fischer Verlag, JenaGoogle Scholar
  40. Mikhailov NI (1961) Gory Yuzhnoi Sibiri (Mountains of Southern Siberia). Gosudarstvennoe izdatel’stvo geograficheskoi literatury, MoskvaGoogle Scholar
  41. Milkov FN (1977) Prirodnye zony SSSR (Natural zones of the USSR). Mysl, MoskvaGoogle Scholar
  42. Nimis PL, Malyshev LI, Bolognini G (1994) A phytogeographic analysis of birch woodlands in the southern part of West Siberia. Vegetatio 113:25–39CrossRefGoogle Scholar
  43. Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Model 157:119–129CrossRefGoogle Scholar
  44. Olyunin VN (1975) Gory Yuzhnoi Sibiri (Mountains of Southern Siberia). In: Korzhuev SS (ed) Ravniny i gory Sibiri. Nauka, Moskva, pp 245–328Google Scholar
  45. Ovington JD (1953) Studies of the development of woodland conditions under different trees. I. Soil pH. J Ecol 41:13–52Google Scholar
  46. Polikarpov NP, Chebakova NM, Nazimova DI (1986) Klimat i gornye lesa Sibiri (Climate and mountain forests of Siberia). Nauka, NovosibirskGoogle Scholar
  47. Rybníčková E, Rybníček K (1992) The environment of the Pavlovian – palaeoecological results from Bulhary, South Moravia. In: Kovar-Eder J (ed) Palaeovegetational development in Europe and regions relevant to its palaeofloristic evolution. Museum of Natural History, Vienna, pp 73–79Google Scholar
  48. Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258CrossRefGoogle Scholar
  49. Smagin VN, Il’inskaya SA, Nazimova DI et al (1980) Tipy lesov gor Yuzhnoi Sibiri (Forest types of Southern Siberia). Nauka, NovosibirskGoogle Scholar
  50. Sochava VB (1979) Rastitel’nyi pokrov na tematicheskich kartach (Plant cover on thematic maps). Nauka, NovosibirskGoogle Scholar
  51. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New YorkGoogle Scholar
  52. Spribille T, Chytrý M (2002) Vegetation surveys in the circumboreal coniferous forests: a review. Folia Geobot 37:365–382CrossRefGoogle Scholar
  53. Sukachev VN, Dylis NV (1964) Fundamentals of forest biogeocoenology. Oliver and Boyd, Edinburgh, LondonGoogle Scholar
  54. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen, České BudějoviceGoogle Scholar
  55. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  56. Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818CrossRefGoogle Scholar
  57. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947CrossRefGoogle Scholar
  58. Vitt DH (2000) Peatlands: ecosystems dominated by bryophytes. In: Shaw AJ, Goffinet B (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp312–343Google Scholar
  59. Voskresenskii SS (1962) Geomorfologia Sibiri (Geomorphology of Siberia). Izdatel’stvo Moskovskogo Universiteta, MoskvaGoogle Scholar
  60. Walter H (1974) Die Vegetation Osteuropas, Nord- und Zentralasiens. Gustav Fischer Verlag, StuttgartGoogle Scholar
  61. Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In: Whittaker RH (eds) Classification and ordination of plant communities. W. Junk, The Hague, pp 617–726Google Scholar
  62. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quatern Res 53:203–213CrossRefGoogle Scholar
  63. Zhitlukhina TI (1988) Sintaksonomiya lesov Sayano-Shushenskogo biosfernogo zapovednika (Syntaxonomy of forests of the Sayano-Shushenskii Biosphere Reserve). Byul Mosk Obshch Isp Prir Otd Biol 93(3):66–76Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Milan Chytrý
    • 1
    Email author
  • Jiří Danihelka
    • 1
    • 2
  • Svatava Kubešová
    • 1
    • 3
  • Pavel Lustyk
    • 1
  • Nikolai Ermakov
    • 4
  • Michal Hájek
    • 1
    • 2
  • Petra Hájková
    • 1
    • 2
  • Martin Kočí
    • 1
  • Zdenka Otýpková
    • 1
  • Jan Roleček
    • 1
  • Marcela Řezníčková
    • 1
  • Petr Šmarda
    • 1
  • Milan Valachovič
    • 5
  • Denis Popov
    • 6
  • Ivan Pišút
    • 5
  1. 1.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Department of BotanyMoravian MuseumBrnoCzech Republic
  4. 4.Central Siberian Botanical GardenRussian Academy of SciencesNovosibirskRussia
  5. 5.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  6. 6.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations