Plant Ecology

, Volume 195, Issue 2, pp 179–196

Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates

  • Barbara Holzinger
  • Karl Hülber
  • Martin Camenisch
  • Georg Grabherr
Article

Abstract

Areas of 2,800–3,000 m a.s.l. represent the alpine-nival ecotone in the Alps. This transition zone connecting the closed swards of the alpine belt and the scattered vegetation of the nival belt may show particularly strong climate warming driven fluctuations in plant species richness compared to the nival belt. To test this hypothesis, 12 summits within this range were investigated in the canton of Grisons, Switzerland in 2004. Complete lists of vascular plant species consisting of 5–70 species were collected on each summit and the elevation of the uppermost occurrence of each species was recorded. These data were compared to historical records over 120 years in age. Within this time, vascular plant species richness increased by 11% per decade on summits in the alpine-nival ecotone. Despite this considerable change, a comparison with nival summits did not support the hypothesis that species richness increase at the alpine-nival ecotone is higher than in the nival belt. A general trend of upward migration in the range of several metres per decade could be observed. Anemochorous species were more often found to be migrating than zoochorous or autochorous species and migration was higher on calcareous than on siliceous bedrock. A comparison between the summits with the adjacent slopes in our study revealed that changes in species number could be used as an indicator for climate-induced changes—if at all—only for the narrow summit areas.

Keywords

Alpine-nival ecotone Climate change Functional species groups Migration rates Species richness change Switzerland 

References

  1. Bader S, Bantle H (2004) Das Schweizer Klima im Trend. Temperatur- und Niederschlagsentwicklung 1864–2001. Veröff MeteoSchweiz 68:45ffGoogle Scholar
  2. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80CrossRefGoogle Scholar
  3. Braun-Blanquet J (1913) Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Neue Denkschr Schweiz nat forsch Ges 48:1–348Google Scholar
  4. Braun-Blanquet J (1958) Über die obersten Grenzen pflanzlichen Lebens im Gipfelbereich des schweizerischen Nationalparks. Kommission Schweiz nat forsch Ges zur wiss Erforsch des Nationalparks 6:119–142Google Scholar
  5. Camenisch M (2002) Veränderungen der Gipfelflora im Bereich des Schweizerischen Nationalparks: Ein Vergleich über die letzten 80 Jahre. Jahresber nat forsch Ges Graubünden 111:27–37Google Scholar
  6. Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308CrossRefGoogle Scholar
  7. di Castri F, Hansen AJ, Holland MM (1988) A new look at ecotones: emerging international projects on landscape boundaries. Biol Int 17:1–163Google Scholar
  8. Dubey B, Yadav R (2006) Migration of plant species in response to recent climate change in the western Himalaya, India. In: Price MF (ed) Global change in mountain regions. Sapiens, Duncow, UKGoogle Scholar
  9. Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya, India. Curr Sci 85:1135–1136Google Scholar
  10. Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  11. Fischer M, Adler W, Oswald K (1994) Exkursionsflora von Österreich. Ulmer, StuttgartGoogle Scholar
  12. Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. J Ecol 60:93–102CrossRefGoogle Scholar
  13. Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic Alpine Res 30:207–221CrossRefGoogle Scholar
  14. Grabherr G (1997) The high-mountain ecosystems of the Alps. In: Wielgolaski FE (ed) Polar and alpine tundra ecosystems of the world 3. Elsevier, Amsterdam, pp 97–121Google Scholar
  15. Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FSI, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Heidelberg, pp 167–181Google Scholar
  16. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448CrossRefGoogle Scholar
  17. Grabherr G, Gottfried M, Pauli H (2001) Aspects of global change in the Alps and in the high arctic region. Long-term monitoring of mountain peaks in the Alps. In: Burga CA, Kratochwil A (eds) Biomonitoring: General and applied aspects on regional and global scales. Kluwer Academic Publishers, Dordrecht, pp 153–177Google Scholar
  18. Heer O (1885) Über die nivale Flora der Schweiz. Neue Denksch Allg Schweiz Ges Gesamt Nat wiss 29:1–114Google Scholar
  19. Hofer HR (1985) Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Ber Geobot Inst Eidgenöss Tech Hochsch Stift Rübel 58:39–54Google Scholar
  20. IPCC (2007) Climate change 2007: working Group 1, fourth assessment Report. WMO, UNEPGoogle Scholar
  21. Kammer PA, Mohl A (2002) Factors controlling species richness in alpine plant communities: an assessment of the importance of stress and disturbance. Arctic Antarct Alpine Res 34:398–407CrossRefGoogle Scholar
  22. Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Change 1:70–77CrossRefGoogle Scholar
  23. Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6CrossRefGoogle Scholar
  24. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, BerlinGoogle Scholar
  25. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77CrossRefGoogle Scholar
  26. Kullman L (2006) Increase in plant species richness on alpine summits in the Swedish Scandes—impacts of recent climate change. In: Price MF (ed) Global change in mountain regions. Sapiens, Duncow, UKGoogle Scholar
  27. Lauber K, Wagner G (1996) Flora Helvetica. Paul Haupt, BernGoogle Scholar
  28. MathSoft (1999) S-Plus 2000 Math Soft, Data analysis products division. Seattle, Washington, USAGoogle Scholar
  29. Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst Eidgenöss Tech Hochsch Zürich 85:1–263Google Scholar
  30. Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems - upward shifting of alpine plants. World Resource Rev 8:382–390Google Scholar
  31. Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life—the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325Google Scholar
  32. Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther G-R, Burga CA, Edwards PJ (eds) Fingerprints of climate change—Adapted behaviour and shifting species ranges. Kluwer Academic Publisher, New York, pp 139–149Google Scholar
  33. Peteet D (2000) Sensitivity and rapidity of vegetational response to abrupt climate change. PNAS 97:1359–1361PubMedCrossRefGoogle Scholar
  34. Rothmaler W (2002) Exkursionsflora von Deutschland. Spektrum, HeidelbergGoogle Scholar
  35. Rübel E (1912) Pflanzengeographische Monographie des Berninagebietes. Engelmann, LeipzigGoogle Scholar
  36. Sakai A, Larcher W (1987) Frost survival in plants: responses and adaptation to freeing stress. Ecological studies 62. Springer, BerlinGoogle Scholar
  37. Schibler W (1898) Über die nivale Flora der Landschaft Davos Jahrb Schweiz Alpenclubs 33Google Scholar
  38. Theodose TA, Bowman WD (1997) The influence of interspecific competition on the distribution of an alpine graminoid: evidence for the importance of plant competition in an extreme environment. Oikos 79:101–114CrossRefGoogle Scholar
  39. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  40. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250PubMedCrossRefGoogle Scholar
  41. van der Pijl L (1972) Principles of dispersal in higher plants. Springer, BerlinGoogle Scholar
  42. Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M, Villar L (2003) Plant diversity of European mountains- –a regional synthesis. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe: a Europe-wide assessment of biological richness and change Ecological Studies 167. Springer, Heidelberg, pp 149–172Google Scholar
  43. Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Systemat 6:169–185CrossRefGoogle Scholar
  44. Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548CrossRefGoogle Scholar
  45. Walther GR, Burga CA, Edwards PJ (eds) (2001) Fingerprints of climate change—adapted behaviour and shifting species ranges. Kluwer Academic Publishers, New YorkGoogle Scholar
  46. Walther GR, Pott R, Beissner S (2004) Climate change and high mountain vegetation. In: Keplin B, Broll G, Mattes H (eds) Mountain and northern ecosystems: Arbeiten aus dem Institut für Landschaftsökologie. Westfälische Wilhelms-Universität. MünsterGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Barbara Holzinger
    • 1
  • Karl Hülber
    • 1
    • 2
  • Martin Camenisch
    • 3
  • Georg Grabherr
    • 1
  1. 1.Department of Conservation Biology, Vegetation and Landscape Ecology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  2. 2.V.I.N.C.A.—Vienna Institute for Nature Conservation and AnalysesViennaAustria
  3. 3.Camenisch & ZahnerChurSwitzerland

Personalised recommendations