Plant Ecology

, Volume 194, Issue 2, pp 231–242 | Cite as

Floristic gradients of herbaceous vegetation and P/N ratio in soil in a Mediterranean area

  • Giuliano FanelliEmail author
  • Marco Lestini
  • Alessandro Serafini Sauli
Original Paper


A broad range of herbaceous plant comunities in a Mediterranean Landscape in central Italy, running from heavily urbanized areas to semi-natural pastures, has been studied. These communities can be easily arranged along a gradient of ruderality. We inspected which of a series of soil parameters could better explain this gradient (pH, CaCO3, granulometry, N, P, C/N, P/N). We show that (1) the single most important explanatory variable is P/N ratio of soil; (2) nitrogen and carbon pools in soil are related, in the set of communities studied, with another gradient of decreasingly frequent, predictable, moderate disturbance such as trampling. We discuss the meaning of these results.


Disturbance Nitrogen Nitrophily Phosphorus Ruderality 



Our deepest thanks to Giuseppina Dowgiallo for laboratory facilities, to Paolo Tescarollo for help in the course of the study and to Sandro Pignatti for useful suggestions, and to two anonymous referees for greatly helping in improving the presentation of this rather intricate study.


  1. Aerts RH, Chapin III FS (2000) The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  2. Angels Cardon I, Florit M (1980) Funcionalisme i ecologia d’algunes comunitats vegetals barcelonines. Institu d’Estudis Catalans, Barcelona.Google Scholar
  3. Anzalone B (1994) Prodromo della flora romana (elenco preliminare della piante vascolari spontanee del Lazio)—Aggiornamento. Parte 1°: Pteridophyta, Gymnospermae, Angiospermae Dycotyledones. Ann di Bot 52 (suppl 11):1–81Google Scholar
  4. Anzalone B (1996) Prodromo della flora romana (elenco preliminare della piante vascolari spontanee dei Lazio)—Aggiornamento. Parte 2a: Angiospermae Monocotyledones. Ann di Bot 52 (suppl 11): 1–81Google Scholar
  5. Arnoldus-Huyzendveld A (2003) I suoli di Roma. Comune di Roma. Dipartimento X. U.O. Sviluppo Sostenibile, Roma.Google Scholar
  6. Bigi G, Cosentino D, Parotto M (1993) Modello litostratigrafico- strutturale della regione Lazio scala 1:250.000. Regione Lazio, Università di Roma “La Sapienza”, Roma.Google Scholar
  7. Blasi C (1994) Fitoclimatologia del Lazio. Fitosociologia 27:151–175Google Scholar
  8. Celesti Grapow L, Fanelli G. (1993) The vanishing landscape of the Campagna Romana. Landscape Urban Plan 24:331–336Google Scholar
  9. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497CrossRefGoogle Scholar
  10. Crawley MJ (2004) Timing of disturbance and coexistence in a species-rich ruderal plant community. Ecology 85:3277–3288CrossRefGoogle Scholar
  11. Downing JA, McCauley E (1992) The nitrogen:phosphorus relationship in lakes. Limnol Oceanogr 37:936–945CrossRefGoogle Scholar
  12. Egloff Th (1983) Der Phosphor als primär limitierender Nährstoff in Streuwiesen (Molinion). Düngungexperiment im unteren Reusstal. Berichte Geobotanisches Institutes ETW, Stiftung Rübel 50:119–148Google Scholar
  13. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5 Aufl. Ulmer, StuttgartGoogle Scholar
  14. Fanelli G (2002) Analisi fitosociologica dell’area metropolitana di Roma. Braun-Blanquetia 27:1–269Google Scholar
  15. Fanelli G, Lucchese F (1998) The status of Brometalia rubenti-tectorum communities from the Mediterranean area in different syntaxonomical schemes. Rend Fisici dell’Accademia dei Lincei 9:241–255Google Scholar
  16. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  17. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  18. Güsewell S, Koerselman W. (2002) Variation in nitrogen and phosphorous concentrations of wetland plants. Perspec Plant Ecol Evol Syst 5:37–61CrossRefGoogle Scholar
  19. Güsewell S, Koerselman W, Verhoeven JTA (1998) The N:P ratio and the nutrient limitation of wetland plants. Bulletin Geobotanisches Institutes ETH 64:77–90Google Scholar
  20. Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratio as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384CrossRefGoogle Scholar
  21. Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 73:1083–1092Google Scholar
  22. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  23. Margaris NS, Adamandiadou S, Siafaca L, Diamantopoulos J (1984) Nitrogen and phosphorous content in plant species of Mediterranean ecosystems in Greece. Vegetatio 55:29–35CrossRefGoogle Scholar
  24. Mamolos AP, Veresoglou DS, Barbayiannis N (1995) Plant species abundance and tissue concentration of limiting nutrients in vegetation of fertile alluvial soil. Plant Ecol 148:245–253CrossRefGoogle Scholar
  25. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  26. Nowack K-H (1990) Phosphorversorgung biologisch bewirtschaftet Äcker und Möglichkeiten der Bioindikation. Göttinger Diss 8:1–138 u. AnhangGoogle Scholar
  27. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270PubMedCrossRefGoogle Scholar
  28. Redfield AC (1934) On the proportion of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnson Memorial Volume, Liverpool University Press, Liverpool, pp 176–192Google Scholar
  29. Redfield CA (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  30. Rivas-Martínez S, Izco J (1977) Sobre la vegetacion terofitica subnitrofila mediteranea (Brometalia rubenti-tectori). Anal Inst Botanico Cavanilles 34(1):355–381Google Scholar
  31. Salter PJ, Williams JB (1969) The influence of texture on the moisture of soils: relationships between particle size composition and moisture content at the upper and lower limits of available water. J Soil Sci 20:126–131CrossRefGoogle Scholar
  32. Schaffer AP, Sýkora KA (2002) Synecology of species-rich plant communities on roadside verges in the Netherlands. Phytocoenologia 32:29–83CrossRefGoogle Scholar
  33. Spartes DL (ed) (1996) Methods of soil analysis Part III Chemical methods. Soil Science Society of America Book series 5. Madison, WisconsinGoogle Scholar
  34. Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton NJGoogle Scholar
  35. Ter Braak CJF (1987) Unimodal models to relate species to environment. Dissertationsthesis landbouwenuniversiteite te Waageningen, WaageningenGoogle Scholar
  36. Tyrrell T (1999) The relative influence of nitrogen and phosphorous on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  37. Verhoeven JYA, Aerts NHM (1987) Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. II N and P accumulation in plant biomass in relation to the release of inorganic N and P in the peat. Oecologia 72:557–561CrossRefGoogle Scholar
  38. Verhoeven JTA, Schmitz M.B (1991) Control of plant growth by nitrogen and phosphorous in mesotrophic fens. Biogeochemistry 12:135–148CrossRefGoogle Scholar
  39. Vitousek PM, Matson PA, Van Cleve K (1989) Nitrogen availability and nitrification during succession: primary, secondary and old-field seres. Plant Soil 115:229–239CrossRefGoogle Scholar
  40. Vitousek PM, Walker LR (1987) Colonization, succession and resource availability; ecosystem-level interactions. In: Gray AM, Crawley M, Edwards PJ (eds), Colonization, succession and stability. Blackwell Scientific, Oxford, pp 207–233Google Scholar
  41. Vos W, Stortelder A (1992) Vanishing Tuscan landscapes. Landscape ecology of a Submediterranean-Montane area (Solano Basin, Tuscany, Italy). Pudoc Scientific Publisher, WageningenGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Giuliano Fanelli
    • 1
    Email author
  • Marco Lestini
    • 1
  • Alessandro Serafini Sauli
    • 1
  1. 1.Dipartimento di Biologia VegetaleOrto Botanico dell’Università di Roma “La Sapienza”RomaItaly

Personalised recommendations