Plant Ecology

, Volume 194, Issue 2, pp 157–177 | Cite as

An inventory of forest relicts in the pastures of Southern Tibet (Xizang A.R., China)

  • Georg Miehe
  • Sabine Miehe
  • Martin Will
  • Lars Opgenoorth
  • La Duo
  • Tsering Dorgeh
  • Jianquan Liu
Original Paper

Abstract

An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959–1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200–250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.

Keywords

China Environmental change Forest history Habitat fragmentation Juniperus Kobresia Tibet 

Notes

Acknowledgements

The inventory was carried out within the framework of the Lhasa-Marburg University partnership programme supported since 2003 by the VW Foundation, in cooperation with the Tibet Plateau Biology Institute of Lhasa (1995–1999) and Institutes of the Chinese Academy of Sciences in Xining, Lanzhou and Chengdu (1999–2004). The German Research Council generously supported all expeditions. Christiane Enderle (Marburg) prepared maps and graphs with her usual elaborateness. Jürgen Böhner (Hamburg) kindly provided data of Transeau ratios. Two unknown reviewers helped us improving the article considerably.

References

  1. Aldenderfer M, Zhang Y (2004) The prehistory of the Tibetan Plateau to the seventh century A.D.: perspectives and research from China and the west since 1950. J World Prehistory 18:1–55CrossRefGoogle Scholar
  2. An C-B, Feng Z-D, Barton L (2006) Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Sci Rev 25:351–361CrossRefGoogle Scholar
  3. Institute of Geography, Chinese Academy of Sciences (1990) Atlas of Tibet. Science Press, Beijing (in Chinese)Google Scholar
  4. Blyakharchuk TA, Wright HE, Borodavko PS, Knaap VDWO, Ammann B (2004) Late Glacial and Holocene vegetational changes on the Ulagan high mountain plateau, Altai Mountains, Southern Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 209:259–279CrossRefGoogle Scholar
  5. Böhner J (1996) Säkulare Klimaschwankungen und rezente Klimatrends Zentral- und Hochasiens. Göttinger Geographische Abhandlungen 101Google Scholar
  6. Böhner J, Lehmkuhl F (2005) Climate and environmental change modelling in Central and High Asia. Boreas 34:220–231CrossRefGoogle Scholar
  7. Brauen M (1983) Peter Aufschnaiter. Sein Leben in Tibet. Steiger, InnsbruckGoogle Scholar
  8. Bräuning A (1999) Zur Dendroklimatologie Hochtibets während des letzten Jahrtausends. Dissertationes Botanicae 312, StuttgartGoogle Scholar
  9. Campo EV, Cour P, Hang S (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: the pollen record. Palaeogeogr Palaeoclimatol Palaeoecol 120:49–63CrossRefGoogle Scholar
  10. Chandra Das S (1902/1988) Lhasa and Central Tibet. Mehra Offset Press, DelhiGoogle Scholar
  11. Chayet A (1994) Art et Archéologie du Tibet. Picard, ParisGoogle Scholar
  12. Chen S, Liu Y, Thomas A (2006) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Climate Change 76:291–319CrossRefGoogle Scholar
  13. Da N, Keng H, Shan F (1989) A preliminary investigation on the vegetational and climatic changes since 11,000 years in Qinghai Lake—an analysis based on palynology in core QH 85/14C. Acta Bot Sinica 31:803–814Google Scholar
  14. Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, KewGoogle Scholar
  15. Freitag H (1972) Die natürliche Vegetation des südostspanischen Trockengebietes. Bot Jahrb 91:147–308Google Scholar
  16. Frenzel B (1994) Über Probleme der holozänen Vegetationsgeschichte Osttibets. Göttinger Geographische Abhandlungen 95:143–166Google Scholar
  17. Frenzel B, Pecsi M, Velichko AA (1992) Atlas of palaeoclimates and palaeoenvironments of the Northern Hemisphere. Borntraeger, StuttgartGoogle Scholar
  18. Fu D-X, Xu T-W, Feng Z-Y (2000) The ancient carbonized barley (Hordeum vulgare L. var. nudum) kernel discovered in the middle Yalu Tsangpo river basin in Tibet. Southwest China J Agricul Sci 13:38–41Google Scholar
  19. Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1999) Vegetation dynamics of Mongolia. Geobotany 26. Kluwer, DordrechtGoogle Scholar
  20. Henning I (1975) Die La Sal Mountains, Utah. Ein Beitrag zur Geoökologie der Colorado-Plateau-Provinz und zur vergleichenden Hochgebirgsgeographie. Abhandlungen Akademie der Wissenschaften und Literatur. Math.-Naturwiss. Klasse, Jahrgang 1975.2Google Scholar
  21. Henning I (1994) Hydroklima und Klimavegetation der Kontinente. Münstersche Geographische Arbeiten 37Google Scholar
  22. Herzschuh U, Kürschner H, Mischke S (2006) Temperature variability and vertical vegetation belt shifts during the last ∼50,000 years in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quaternary Res 66:133–146CrossRefGoogle Scholar
  23. Jäger EJ (2005) The occurrence of forest plants in the desert mountains of Mongolia and their bearing on the history of the climate. Biol Res Mongolia 9:289–298Google Scholar
  24. Kaiser K, Miehe G, Schoch WH, Zander A, Schlütz F (2006) Relief, soil and lost forests: late Holocene environmental changes in Southern Tibet under human impact. Zeitschrift Geomorphologie, Suppl 142:149–173Google Scholar
  25. Kessler M (2002) The “Polylepis problem”: where do we stand? Ecotropica 8:97–110Google Scholar
  26. Kuhle M, Jacobsen J-P (1988) On the geoecology of Southern Tibet. GeoJournal 17:597–613Google Scholar
  27. Lauer W, Rafiqpoor MD, Frankenberg P (1996) Die Klimate der Erde. Erdkunde 50:275–300Google Scholar
  28. Ludlow F (1951) The birds of Kongbo and Pome, SE Tibet. The Ibis 93:547–578Google Scholar
  29. Miehe G, Miehe S (1994) Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24:53–110Google Scholar
  30. Miehe G, Miehe S (2000a) Comparative high mountain research on the treeline ecotone under human impact. Erdkunde 54:34–50Google Scholar
  31. Miehe G, Miehe S (2000b) Environmental changes in the pastures of Xizang. Marburger Geographische Schriften 135:282–312Google Scholar
  32. Miehe G (1986) The ecological law of “relative habitat constancy and changing biotope” as applied to multizonal high mountain areas. Proceed. Intern. Symposium Mountain Vegetation. Science Press, Beijing, pp 56–59Google Scholar
  33. Miehe G (1989) Vegetation patterns on Mt. Everest as influenced by monsoon and föhn. Vegetatio 79:21–32CrossRefGoogle Scholar
  34. Miehe G, Miehe S, Schlütz F (2002) Vegetationskundliche und palynologische Befunde aus dem Muktinath-Tal (Tibetischer Himalaya, Nepal). Ein Beitrag zur Landschaftsgeschichte altweltlicher Hochgebirgshalbwüsten. Erdkunde 56:268–285CrossRefGoogle Scholar
  35. Miehe G, Miehe S, Huang J, Otsu T (1998) Forschungsdefizite und -perspektiven zur Frage der potenziellen natürlichen Bewaldung in Tibet. Petermanns Geographische Mitteilungen 142:155–164Google Scholar
  36. Miehe G, Miehe S, Koch K, Will M (2003) Sacred forests in Tibet. Using Geographical Information Systems for forest rehabilitation. Mountain Res Develop 23:324–328CrossRefGoogle Scholar
  37. Miehe G, Miehe S, Koch K (2004) Towards the green belt in southern Xizang. Initial results of an applied research project to rehabilitate degraded rangelands. Proceed. Intern. Workshop Strategic Innovations for improving pastoral livelihoods in the Hindu Kush-Himalayan highlands. ICIMOD (Kathmandu), pp 48–50, 61–64Google Scholar
  38. Miehe G, Miehe S, Opgenoorth L, Cermak J, Schlütz F, Jäger EJ, Wesche K, Samiya R (Ms. in review Palaeo 3): Mountain forest islands and Holocene forest retreat in Central Asian deserts. A case study from the South Gobi Altay. MongoliaGoogle Scholar
  39. Miehe G, Miehe S, Schlütz F, Kaiser K, La D (2006) Palaeo-ecological and experimental evidence of former forests and woodlands in the treeless desert pastures of Southern Tibet (Lhasa, A.R. Xizang, China). Palaeogeogr Palaeoclimatol Palaeoecol 242:54–67CrossRefGoogle Scholar
  40. Miehe G, Miehe S, Vogel J, La Duo, Sonam Co (Ms. in review Mountain Research Development) Highest treeline of the northern Hemisphere found in Southern Tibet at 4,900 mGoogle Scholar
  41. Miehe G, Winiger M, Böhner J, Zhang Y (2001) The climatic diagram map of High Asia. Purpose and concepts. Erdkunde 55:94–97CrossRefGoogle Scholar
  42. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley and Sons, New YorkGoogle Scholar
  43. Pachur H-J, Altmann N (2006) Die Ostsahara im Spätquartär. Ökosystemwandel im größten hyperariden Raum der Erde. Springer, BerlinGoogle Scholar
  44. Petit-Maire J, Bouysse P (2002) Cartes des environnements du monde pendant des deux derniers extrêmes climatiques. 1:50 M. Aix-en-ProvenceGoogle Scholar
  45. Ren G (2000) Decline of the mid- to late Holocene forests in China. J Quaternary Sci 15:273–281CrossRefGoogle Scholar
  46. Schlütz F (1999) Palynologische Untersuchungen über die holozäne Vegetations-, Klima- und Siedlungsgeschichte in Hochasien und das Pleistozän in China. Dissertationes Botanicae 315Google Scholar
  47. Song M, Zhou C, Hua Q (2004) Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mountain Res Develop 24:166–173CrossRefGoogle Scholar
  48. Tang LY, Shen CM (1996) Late Cenocoic vegetational history and climatic characteristics of Qinghai-Xizang Plateau. Acta Micropalaeontologica Sinica 13:321–337Google Scholar
  49. Thelaus M (1992) Some characteristics of the mire-development in Hongyuan County, eastern Tibet Plateau. Proceed. 9th Intern. Peat Congress 1. Uppsala, pp 334–351Google Scholar
  50. Thomas A, Chen S (2002) Landwirtschaft und klimatische Trends im zentralen Yarlung Tsangpo-Tal, Tibet. Erdkunde 56:371–384CrossRefGoogle Scholar
  51. Walter H, Walter E (1953) Einige allgemeine Ergebnisse unserer Forschungsreise nach Südwest-Afrika 1952/53: Das Gesetz der relativen Standortkonstanz; das Wesen der Pflanzengemeinschaften. Ber Deutsch Bot Ges 66:228–236Google Scholar
  52. Wesche K, Ronnenberg K, Hensen I (2005) Lack of sexual reproduction in dry mountain steppe populations of the clonal shrub Juniperus sabina L. in Southern Mongolia. J arid environ 63:390–405CrossRefGoogle Scholar
  53. Wu C (1983–1987) Flora Xizangica. 5 vols. Science Press, Beijing (in Chinese)Google Scholar
  54. Yu J (2004) Pollen based reconstruction of late Pleistocene and Holocene vegetation and climatic changes of Yang Lake area, Tibet. Chinese Bull Bot 21:91–100Google Scholar
  55. Yu G, Tang L, Yang X, Ke X, Harrison SP (2001) Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecol Biogeogr 10:503–519CrossRefGoogle Scholar
  56. Zhang D, Li SH (2002) Optical dating of Tibetan hand- und footprints: an implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys Res Lett 29(16):1–3Google Scholar
  57. Zhang J (1988) Vegetation of Xizang. Science Press, Beijing (in Chinese)Google Scholar
  58. Zhang Q, Chiang T, Miehe G, Schlütz F, Liu J, Abbott RJ (2005) Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol 14:3513–3524PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Georg Miehe
    • 1
  • Sabine Miehe
    • 1
  • Martin Will
    • 1
  • Lars Opgenoorth
    • 1
  • La Duo
    • 2
  • Tsering Dorgeh
    • 2
  • Jianquan Liu
    • 3
  1. 1.Faculty of GeographyUniversity of MarburgMarburgGermany
  2. 2.Department of BiologyTibet University LhasaLhasa, A.R. XizangChina
  3. 3.Northwest Institute of Plateau BiologyChinese Academy of SciencesXining, QinghaiChina

Personalised recommendations