Plant Ecology

, Volume 189, Issue 2, pp 291–299 | Cite as

Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought

Original paper


A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.


Arbutus unedo Carbon sink Climate change Mediterranean forests Phillyrea latifolia Quercus ilex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to DARP (Generalitat de Catalunya) and A. Vallvey permission and help to conduct this research in the Poblet Forest. This research was financially supported by MEC projects CLI97-0344, REN2003-04871, and CGL 2004-01402/BOS from the Spanish Government, and by the European project ALARM (Contract 506675, EU sixth framework programme).


  1. Boreux JJ, Gadbin-Henry C, Guiot J, Tessier L (1998) Radial tree-growth modelling with fuzzy regression. Can J Forest Res 28:1249–1260CrossRefGoogle Scholar
  2. Borghetti M, Cinnirella S, Magnani F, Saracino A (1998) Impacts of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12:187–195Google Scholar
  3. Caritat A, Gutiérrez E, Molinas M (2000) Influence on cork-ring width. Tree Physiol 20:893–900PubMedGoogle Scholar
  4. Caritat A, Molinas M, Gutiérrez E (1996) Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). Forest Ecol Manage 86:113–120CrossRefGoogle Scholar
  5. Cartan-Son M, Floret C, Galan MJ, Grandjanny M, Le Floch E, Maistre M, Perret P, Romane F (1992) Factors affecting radial growth of Quercus ilex L. in a coppice stand in southern France. Vegetatio 99–100:61–68CrossRefGoogle Scholar
  6. Chapin III FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  7. Costa A, Pereira H, Oliveira A (2001) A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees 15:438–443CrossRefGoogle Scholar
  8. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  9. Gray AN, Spies TA (1995) Water content measurement in forest soils and decayed wood using time domain reflectometry. Can J Forest Res 25:376–385Google Scholar
  10. Hanson PJ, Todd DE, Amthor JS (2001) A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiol 21:345–358PubMedGoogle Scholar
  11. Hoff C, Rambal S, Joffre R (2002) Simulating carbon water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model. Forest Ecol Manage 164:121–136CrossRefGoogle Scholar
  12. Ibàñez JJ, Lledó MJ, Sánchez JR, Rodà F (1999) Stand structure, aboveground biomass and production. In: Rodà F, Retana J, Gracia CA, Llebot J (eds) Ecology of Mediterranean evergreen oak forests. Springer-Verlag, Berlin, Heidelberg, pp 31–45Google Scholar
  13. IPCC (2001) Third Assessment Report of Working Group I. Climate Change 2001: The Scientific Basis. Cambridge University Press, CambridgeGoogle Scholar
  14. Kirschbaum MU (2000) Forest growth and species distribution in a changing climate. Tree Physiol 20:309–322PubMedGoogle Scholar
  15. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854PubMedCrossRefGoogle Scholar
  16. Kramer K, Leinonen I, Bartelink HH et al (2002) Evaluation of six process-based forest growth models based on eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biol 8:213–230CrossRefGoogle Scholar
  17. Kramer K, Mohren GMJ (2001) Long-term Effects of Climate Change on Carbon Budgets of Forests in Europe. ALTERRA Report 194, Green World Research. Wageningen, The Netherlands, pp 290Google Scholar
  18. Lledó MJ (1990) Compartimentos y flujos biogeoquímicos en una cuenca de encinar del Monte de Poblet. PhD Thesis, Universitat d’Alacant, SpainGoogle Scholar
  19. Lloret F, Siscart D (1995) Los efectos demográficos de la sequía en poblaciones de encina. Cuadernos de la Sociedad Española de Ciencias Forestales 2:77–81Google Scholar
  20. Martínez-Vilalta J, Mangirón M, Ogaya R, Sauret M, Serrano L, Peñuelas J, Piñol J (2003) Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiol 23:747–758PubMedGoogle Scholar
  21. Mayor X, Belmonte R, Rodrigo A, Rodà F, Piñol J (1994) Crecimiento diametral de la encina (Quercus ilex L.) en un año de abundante precipitación estival: efecto de la irrigación previa y de la fertilización. Orsis 9:13–23Google Scholar
  22. Mayor X, Rodà F (1994) Effects of irrigation and fertilization on stem diameter growth in a Mediterranean holm oak forest. Forest Ecol Manage 68:119–126CrossRefGoogle Scholar
  23. Mooney HA (1983) Carbon-gaining capacity and allocation patterns of Mediterranean climate plants. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems: the role of nutrients. Springer, Berlin, pp 103–119Google Scholar
  24. Oliveira G, Correia O, Martins-Louçao MA, Catarino FM (1994) Phenological and growth patterns of the Mediterranean oak Quercus suber L. Trees 9:41–46CrossRefGoogle Scholar
  25. Ogaya R, Peñuelas J (2003) Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. Flora 198:132–141Google Scholar
  26. Ogaya R, Peñuelas J (2004) Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Écoscience 11:263–270Google Scholar
  27. Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. Forest Ecol Manage 180:175–184CrossRefGoogle Scholar
  28. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484CrossRefGoogle Scholar
  29. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952–2000 in the Mediterranean region. Global Change Biol 8:531–544CrossRefGoogle Scholar
  30. Peñuelas J, Filella I, Lloret F, Siscart D, Piñol J (1998) Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. J Exp Bot 49:229–238CrossRefGoogle Scholar
  31. Peñuelas J, Filella I, Llusià J, Piñol J, Siscart D (2000) Effects of a severe drought on water and nitrogen use by Quercus ilex and Phillyrea latifolia. Biologia Plantarum 43:47–53CrossRefGoogle Scholar
  32. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on mediterranean woody flora of Spain. Forest Sci 47:214–218Google Scholar
  33. Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier RC, Bruna P, Emmett B, Estiarte M, Gorissen A (2004a) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons and species in a North–South European gradient. Ecosystems 7:598–612CrossRefGoogle Scholar
  34. Peñuelas J, Sabaté S, Filella I, Gracia C (2004b) Efectos del cambio climático sobre los ecosistemas terrestres: observación, experimentación y simulación. In: Valladares F (ed), Ecología del bosque mediterráneo en un mundo cambiante. Naturaleza y Parques Nacionales Ministerio de Medio Ambiente, Madrid, pp␣425–460Google Scholar
  35. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic Change 38:345–357CrossRefGoogle Scholar
  36. Rodríguez Murillo JC (1997) Temporal variations in the carbon budget of forest ecosystems in Spain. Ecol Appl 7:461–469CrossRefGoogle Scholar
  37. Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecol Manage 162:23–37CrossRefGoogle Scholar
  38. Sardans J, Peñuelas J (2004) Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 267:367–377Google Scholar
  39. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measurements. J Ecol 83:331–333CrossRefGoogle Scholar
  40. Zhang SH, Romane F (1991) Variations de la croissance radiale de Quercus ilex L. en fonction du climat. Ann Forest Sci 48:225–234Google Scholar
  41. Zegelin SJ, White I, Jenkins DR (1989) Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour Res 25:2367–2376Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Unitat d’Ecofisiologia CSIC-CEAB-CREAF, CREAF (Center for Ecological Research and Forestry Applications)Edifici C, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations