Plant Ecology

, Volume 188, Issue 2, pp 117–131

Multiple regression on distance matrices: a multivariate spatial analysis tool

Article

Abstract

I explore the use of multiple regression on distance matrices (MRM), an extension of partial Mantel analysis, in spatial analysis of ecological data. MRM involves a multiple regression of a response matrix on any number of explanatory matrices, where each matrix contains distances or similarities (in terms of ecological, spatial, or other attributes) between all pair-wise combinations of n objects (sample units); tests of statistical significance are performed by permutation. The method is flexible in terms of the types of data that may be analyzed (counts, presence–absence, continuous, categorical) and the shapes of response curves. MRM offers several advantages over traditional partial Mantel analysis: (1) separating environmental distances into distinct distance matrices allows inferences to be made at the level of individual variables; (2) nonparametric or nonlinear multiple regression methods may be employed; and (3) spatial autocorrelation may be quantified and tested at different spatial scales using a series of lag matrices, each representing a geographic distance class. The MRM lag matrices model may be parameterized to yield very similar inferences regarding spatial autocorrelation as the Mantel correlogram. Unlike the correlogram, however, the lag matrices model may also include environmental distance matrices, so that spatial patterns in species abundance distances (community similarity) may be quantified while controlling for the environmental similarity between sites. Examples of spatial analyses with MRM are presented.

Keywords

Community similarity Distance matrix Mantel correlogram Multivariate analysis Partial Mantel test Spatial autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustin N.H., Mugglestone M.A. and Buckland S.T. (1996). An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33:339–347CrossRefGoogle Scholar
  2. Bergeron Y. (1991). The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology 72:1980–1992CrossRefGoogle Scholar
  3. Borcard D. and Legendre P. (1994). Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ. Ecol. Stat. 1:37–61CrossRefGoogle Scholar
  4. Borcard D., Legendre P., Avois-Jacquet C., and Tuomisto H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832CrossRefGoogle Scholar
  5. Borcard D., Legendre P. and Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  6. Condit R., Pitman N., Leigh E.G., Chave J., Terborgh J., Foster R.B., Nuñez P., Aguilar S., Valencia R., Villa G., Muller-Landau H.C., Losos E., and Hubbell S.P. (2002). Beta-diversity in tropical forest trees. Science 295:666–669PubMedCrossRefGoogle Scholar
  7. Dutilleul P., Stockwell J.D., Frigon D. and Legendre P. (2000). The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies. J. Agricult. Biol. Environ. Stat. 5:131–150CrossRefGoogle Scholar
  8. Everham E. M. and Brokaw N.V.L. (1996). Forest damage and recovery from catastrophic wind. Bot. Rev. 62:113–185Google Scholar
  9. Fortin M.-J. and Payette S. (2002). How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience 9:213–218Google Scholar
  10. Insightful Corporation (2002). SPLUS version 6.1. Insightful Corporation, SeattleGoogle Scholar
  11. Johnson E.A. (1992). Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. Cambridge University Press, CambridgeGoogle Scholar
  12. Legendre P. (1993). Spatial autocorrelation: trouble or new paradigm. Ecology 74:1659–1673CrossRefGoogle Scholar
  13. Legendre P. (2000). Comparison of permutation methods for the partial correlation and partial Mantel tests. J. Stat. Comput. Simul. 67:37–73CrossRefGoogle Scholar
  14. Legendre P., Borcard D., and Peres-Neto P.R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75:435–450CrossRefGoogle Scholar
  15. Legendre P. and Gallagher E.D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  16. Legendre P., Lapointe F.-J. and Casgrain P. (1994). Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499CrossRefGoogle Scholar
  17. Legendre P. and Legendre L. (1998). Numerical Ecology, 2nd English edition. Elsevier Science, AmsterdamGoogle Scholar
  18. Lichstein J.W., Grau H.R., and Aragón R. (2004). Recruitment limitation in a subtropical landscape mosaic: impact of an exotic tree invasion. J. Veget. Sci. 15:721–728CrossRefGoogle Scholar
  19. Lichstein J.W., Simons T.R., Shriner S.A., and Franzreb K.E. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72:445–463Google Scholar
  20. Manly B.F. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Popul. Ecol. 28:201–218CrossRefGoogle Scholar
  21. Mantel N.A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220PubMedGoogle Scholar
  22. Nekola J.C. and White P.S. (1999). The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–878CrossRefGoogle Scholar
  23. Oden N.L. and Sokal R.R. (1986). Directional autocorrelation: an extension of spatial correlograms to two dimensions. System. Zool. 35:608–617CrossRefGoogle Scholar
  24. Oden N.L. and Sokal R.R. (1992). An investigation of three-matrix permutation tests. J. Classif. 9:275–290CrossRefGoogle Scholar
  25. Raufaste N. and Rousset F. (2001). Are partial Mantel tests adequate?. Evolution 55:1703–1705PubMedGoogle Scholar
  26. Rawlings J.O., Pantula S.G. and Dickey D.A. (1998). Applied Regression Analysis: A Research Tool. 2nd ed. Springer-Verlag, New YorkGoogle Scholar
  27. Rossi R.E., Mulla D.J., Journel A.G. and Franz E.H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62:277–314CrossRefGoogle Scholar
  28. Selmi S. and Boulinier T. (2001). Ecological biogeography of Southern Ocean islands: the importance of considering spatial issues. Am. Nat. 158:426–437CrossRefGoogle Scholar
  29. Smouse P.E., Long J.C. and Sokal R.R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35:627–632CrossRefGoogle Scholar
  30. Sokal R.R. (1986). Spatial data analysis and historical processes. In: Diday E., Escoufier Y., Lebart L., Pages J., Schektman Y. and Tomassone R. (eds), Data Analysis and Informatics, IV. Elsevier Science, Amsterdam, pp. 29–43Google Scholar
  31. Sokal R.R. and Oden N.L. (1978). Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linnean Soc. 10:229–249Google Scholar
  32. Tuomisto H., Ruokolainen K. and Yli-Halla M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244PubMedCrossRefGoogle Scholar
  33. Urban D., Goslee S., Pierce K. and Lookingbill T. (2002). Extending community ecology to landscapes. Ecoscience 9:200–212Google Scholar
  34. Wenny D. G. and Levey D.J. (1998). Directed seed dispersal by bellbirds in a tropical cloud forest. Proc. Natl. Acad. Sci. USA 95:6204–6207PubMedCrossRefGoogle Scholar
  35. Yee T.W. and Mitchell N.D. (1991). Generalized additive models in plant ecology. J. Veget. Sci. 2:587–602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations