Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations


About 45% of the total surface area of the Castile and Leon region today can potentially be occupied by semi-deciduous forests, chiefly dominated by Quercus faginea Willd. and Quercus pyrenaica Lam. On the basis of extrapolated trends in annual mean temperature and precipitation in Castile and Leon observed over the 37-year period from 1961 to 1997 [del Río et al. 2005], predicted changes in the areas covered by Q. faginea and Q. pyrenaica forests in 2025, 2050 and 2075 were made. A decrease in Q. faginea forests may occur if observed trends in temperature and precipitation continue. With respect to Q. pyrenaica forests, they may increase in present Mediterranean areas and decreases in Temperate Submediterranean areas. In some cases, both types of forests could be replaced by deciduous forests. The predicted results in the natural distribution of vegetation types by the bioclimatic models can be used to establish policies for improved future nature conservation and land management.

This is a preview of subscription content, log in to check access.


  1. Alonso Herrero E. 1995. Litología y geomorfología. In: Gallego E., Alonso Herrero E., Penas. A. (coord). Atlas del Medio Natural de la provincia de León. ITGE, Madrid, pp. 11–18.

  2. Bagnouls F. and Gaussen H. (1957). Les climats biologiques et leur classification. Ann. Gèogr. 66: 193–200

  3. Bakkenes M., Alkemade J.R.M., Ihle F., Leemans R. and Latour J.B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol. 8(4): 390–409

  4. Box E.O. (1996). Plant functional types and climate at the global scale. J. Veget. Sci. 7: 309–320

  5. Britton A.J., Pakeman R.J., Carey P.D. and Marrs R.H. (2001). Impacts of climate. Management and nitrogen deposition on the dynamics of lowland heathland. J. Veget. Sci. 12(6): 797–806

  6. Cannel M.G.R. and Hooper M.D. (1990). The Greenhouse Effect and Terrestrial Ecosystems of the UK. Research Publication 4. Institute of Terrestrial Ecology, London

  7. Cattell R.B. (1966). The scree test for the number of factors. Multivar. Behav. Res. 1: 140–161

  8. Cheddadi R., Guiot J. and Jolly D. (2001). The Mediterranean vegetation: what if the atmospheric CO2 increased?. Landscape Ecol.16: 667–675

  9. del Río S. 2003. El Cambio Climático y su influencia en la vegetación de Castilla y León. 822 pp.+maps. Doctoral thesis.

  10. del Río S., Penas A. and Fraile R. 2005. Recent climate variations in Castile and Leon (Spain). Atmospheric Res. 73: 69–85. Avaliable on line:

  11. Fahmy T. and Aubry P. (2003). XLSTAT-Pro (version 7.0). Society Addinsoft, 20 Jay Street, Suite 1003, Brooklyn, NY, 11201, USA

  12. Foley J.A., Levis S., Prentice C., Pollard D. and Thompson S. (1998). Coupling dynamic models of climate and vegetation. Global Change Biol. 4(5): 561–579

  13. Font Tullot I. (2000). Climatología de España y Portugal. Univ. Salamanca, Salamanca

  14. García Fernández J. (1986). El clima en Castilla y León. Ámbito, Valladolid, p. 370

  15. Gavilán R. and Fernández-González F. (1997). Climatic discrimination of Mediterranean broad-leaved scleroplyllous and decidous forests in central Spain. J. Veget. Sci. 8: 377–386

  16. Gavilán R., Fernández-González F. and Blasi C. (1998). Climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol. 139: 1–11

  17. Gitay H., Brown S., Easterling W. and Jallow B. 2001. Ecosystems and their goods and services. Climate Change 2001. In: McCarthy J.J., Canziani N.A., Leary D.J., Dokken D.J. and White K.S. (eds), Impacts. Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, pp. 735–800.

  18. González-Rebollar J.L., Ibáñez J.J., García Álvarez A. and Ganuza A. (2000). Paisaje vegetal, cambio climático y degradación del suelo. Interpretación desde un modelofitoclimático. In: Balairón L. (eds). El cambio climático. El Campo de las Ciencias y de las Artes. Madrid, pp. 223–260

  19. Gordon B., Levis S., Sitch S., Vertenstein M. and Oleson K.W. (2003). A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biol. 9(11): 1543–1566

  20. Hansen A., Neilson R., Dale V., Flather C., Iverson L., Currie D., Shafer S., Cook R. and Bartlein P. (2001). Global change in forests: responses of species. Communities and biomes. Bioscience 51(9): 765–779

  21. Hódar J.A., Castro J. and Zamora R. (2003). Pine processionary caterpillar Thaumetopoea pytocampa as a new treat for relic Mediterranean Scots pine forests under climatic warming. Biol. Conserv. 110: 123–129

  22. Holdridge L.R. 1967. Life Zone Ecology. San José, p. 206.

  23. Holten J.I., Paulsen G. and Oechel W.C. (eds.) (1993). Impacts of Climate Change on Natural Ecosystems. NINA. Trondhein, pp. 75–80

  24. Hossell J.E., Riding A.E. and Brown I. (2003). The creation and characterization of a bioclimatic classification for Britain and Ireland. J. Nature Conserv. 11: 5–13

  25. Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24: 417–441; 498–520.

  26. Huebner C.D. and Vankat J.L. (2003). The importance of environment vs. disturbance in the vegetation mosaic of Central Arizona. J. Veget. Sci. 14(1): 25–34.

  27. Hulme M. and Sheard N. (1999). Escenarios de Cambio Climático para la Península Ibérica. Unidad de Investigación Climática, Reino Unido, p. 6

  28. IPCC 2001. Climate Change 2001: Synthesis Report. Contribution of Working Group I & III to the Third Assessment of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. Cambridge, p. 38.

  29. Julivert M., Fonboté J., Ribeiro A. and Conde L. 1972. Mapa Tectónico de la Península Ibérica y Baleares. Escala: 1:1.000.000. ITGE. Valladolid, p. 459.

  30. Junta de Castilla y León. Dirección General de Urbanismo y Calidad Ambiental (ed) 1995. Atlas del Territorio de Castilla y León. Consejería de Medio Ambiente y Ordenación del Territorio. Valladolid, p. 142.

  31. Karas J. 1997. Climate Change and the Mediterranean Region. Report prepared for Greenpeace. Greenpeace International, Amsterdam, p. 34.

  32. Köppen W. 1918. Klassification der Klimate nach Temperatur. Niederschlag und Jahreslauf. Petermmans. Geographische Mitteilungen 64: 193–203, 243–248.

  33. Köppen W. 1936. Grundiss der Klimakunde. 2 Aufl, Berlin & Leipzig, 388 pp + 9 tables

  34. Köppen W. 1948. Climatología. Con un estudio de los climas de la Tierra. México. Fondo de Cultura Económica, México, 478 pp.

  35. Llorens L., Peñuelas J. and Estiarte M. (2003). Ecophysiological responses of two Mediterranean shrubs, Ertica multiflora and Globularia alypinum, to experimentally drier conditions and warmer conditions. Physiol. Plant. 19: 231–243

  36. Lloret F., Peñuelas J. and Estiarte M. (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biol. 10: 248–258

  37. Luengo M.A., Penas A. and Rivas-Martínez S. 1996a. DATACLI. A program for the input of climatic data.

  38. Luengo M.A., Penas A. and Rivas-Martínez S. 1996b. BIOCLI. A program for computing the bioclimatic diagnosis and climate diagrams.

  39. Morales G., Méndez B., Reques P. and López L. 1995. Asturias. Cantabria. Castilla y León. In: Guisán S. (Dir ed.), Geografía de España, Vol. VII. Instituto Gallach, Barcelona, pp. 1347–1550

  40. Mossmann V.L.F., Castro A., Fraile R., Dessens J. and Sánchez J.L. (2004). Detection of statistically significant trends in the summer precipitation of mainland Spain. Atmos. Res. 70: 43–53

  41. Onate J.J. and Pou A. (1996). Temperature variations in Spain since 1901: a preliminary analysis. Int. J. Climatol. 16: 805–815

  42. Osborne C.P., Mitchell P.L., Sheehy J.E. and Woodward F.I. (2000). Modelling the recent historical impacts of atmospheric CO2 and climate change on mediterranean vegetation. Global Change Biol. 6(4): 445–459

  43. Oturbay A. (2000). Repercusión de las hipótesis del cambio climático en la vegetación del País Vasco. In: Baladrón L. (eds). El cambio climático. El Campo de las Ciencias y de las Artes . Servicio de Estudios del BBVA, Madrid, pp. 283–304

  44. Oturbay A. and Loidi J. (2001). Cambio climático: predicción de su influencia en la distribución de especies arbóreas en el País Vasco. In: Gómez Mercado F., Mota Poveda J.F. (eds). Vegetación y Cambios Climáticos. Servicio de Publicaciones Universidad de Almería, Almería, pp. 283–304

  45. Parry M.L. (ed.). 2000. Assessment of Potential Effects and Adaptations for Climate Change in Europe: Summary and Conclussions. Jackson Environment Institute, University of East Aglia, Norwich, UK, 24 pp.

  46. Peñuelas J., Filella I., and Comas P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biol. 8: 1–16

  47. Peñuelas J. and Boada M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biol. 9(2): 131–140

  48. Prentice I.C., Cramer W., Harrison S.P. Leemans R., Monserud R.A. and Soloman A.M. (1992). A global biome model based on plant physiology and dominance. Soil properties and climate. J. Biogeogr. 19: 117–134

  49. Rivas-Martínez S. (1987). Memoria del mapa de Series de Vegetación de España. Escala 1:400.000. I.C.O.N.A. Ministerio de Agricultura. Pesca y Alimentación, Madrid, p. 268

  50. Rivas-Martínez S. (1991). Bioclimatics belts of West Europe (Relations between bioclimate and plant ecosystems). In: Duplessy J.C., Pons A. and Fantechi R. (eds). Climate and Global Change (Environmental and Quality of Life). Commision of the European Communities, Brussels, pp. 225–246

  51. Rivas-Martínez S. (1995). Clasificación bioclimática de la Tierra. (Bioclimatical Classification System of the World). Folia Bot. Matriten. 16: 1–25

  52. Rivas-Martínez S., Sánchez-Mata D. and Costa M. (1999). North American boreal and western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plants communities of North-America II. Itinera Geobot. 12: 3–316

  53. Rivas-Martínez S., Díaz T.E., Fernández-González F., Izco J., Loidi J., Lousa M. and Penas A. (2002). Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical checklist of 2001. Part I. Itinera Geobotanica 15(1): 1–432

  54. Robinson D., Wagner R. and Swanton D. (2002). Effects of nitrogen on the growth of jack pine competing with Canada blue grass and large-leaved aster. Forest Ecol. Manage. 160(1): 233–242

  55. Sánchez Mata D. (1989). Flora y Vegetación del Macizo oriental de la Sierra de Gredos (Ávila). Diputación Provincial de Ávila. Institución Gran Duque de Alba, Ávila, p. 440

  56. Sanz-Elorza M., Dana E.D., González A. and Sobrino E. (2003). Changes in the high mountain vegetation of Central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 92: 273–280

  57. Tasser E. and Tappeiner U. (2002). Impact of land use changes on mountain vegetation. Appl. Veget. Sci. 5(2): 173–184

  58. Thornthwaite C.W. (1931). The climates of North America according to a new classification. Geograph. Rev. 21: 633–655

  59. Thornthwaite C.W. (1933). The climates of the Earth. Geograph. Rev. 23: 433–440

  60. Thornthwaite C.W. (1948). An approach towards a rational classification of climate. Geograph. Rev. 38: 85–94

  61. Troll C. and Paffen K. (1964). Die Jahreszeitenklimate der Erde. (Summary: The seasonal climates of the Earth). Erkunde 18: 1–28 + map

  62. Tuhkanen S. (1984). A circumboreal system of climatic-phytogeographical regions. Acta Bot. Fenn. 127: 1–50

  63. Walter H. (1976). Die ökologische Systeme der Kontinente. Prinzipien ihrer Gliederung mit Beispielen, Stuttgart, p. 132

  64. Wentworth T.R. and Ulrey C.J. 2000. Comparison of ordination methods for investigating vegetation/environment relationships. Proceedings IAVS Symposium, pp. 24–27

  65. Woodward F.I. (ed.). 1992. Global Climate Change: The Ecological Consequences, Advances in Ecological Research, Vol. 22. Academic Press, London. pp. 257–314

  66. Woodward F.I. and Cramer W. (1996). Plant functional types and climatic changes: introduction. J. Veget. Sci. 7: 306–308

Download references


The authors wish to express their thanks to Rafael Pérez Romero for his valuable help and to INM for kindly making data sets available to them.

Author information

Correspondence to Ángel Penas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Río, S.d., Penas, Á. Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol 185, 269–282 (2006).

Download citation


  • Bioclimatology
  • Climate change
  • Potential natural vegetation
  • Iberian Peninsula