Plant Ecology

, Volume 184, Issue 1, pp 75–87 | Cite as

Petal movement in cape wildflowers protects pollen from exposure to moisture

  • A. Von Hase
  • R.M. Cowling
  • A.G. Ellis


We investigated diurnal patterns of petal movement (upright and reflexed) and sensitivity of pollen to moisture in a winter-flowering flora from the desert coast of Namaqualand, South Africa. Specifically, we tested the hypothesis that nocturnal flower closure associated with upright petal movement affords protection to pollen from winter precipitation. The proportion of open flowers in eight species from seven genera and three families, increased rapidly above air temperatures of about 20 °C. Flower temperature explained most of the variance in petal status. About 90% of the variance in flower temperature was explained by air temperature while radiation, wind speed and relative humidity had no significant independent effect. Petal opening was more closely correlated with temperature than the closing response, which may be under the additional control of endogenous factors. Pollen exposed to moisture overnight had a significantly higher frequency of damaged grains than control pollen in the majority of study species within the Aizoaceae and Neuradeceae. We found no evidence that pollen of asteraceous species exhibiting flower closure is sensitive to moisture. We conclude that pollen damage and the reduction in male fitness that may result from exposure to rain, dew and fog has provided an important selective impetus for the widespread evolution of upright petal movement and associated flower closure found among more than 3500 species in the predominantly winter and spring flowering Cape fynbos and succulent karoo floras.


Fynbos flora Flower closure Flower temperature Petal movement Pollen damage Succulent karoo flora Winter-rainfall desert 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Bruce Anderson and Jan Vlok for valuable discussion, Shirley Pierce for comments on the manuscript, Jonathan Colville and Michael Raine for help in the field, and Henry Botha for technical assistance. Funding from the National Research Foundation’s Sustainable Environment Programme and the Mazda Wildlife Fund is gratefully acknowledged.


  1. Arnold T.H. and De Wet B.C. (eds) 1993. Plants of Southern Africa. Names and Distributions. Memoirs of the Botanical Survey of South Africa. 62Google Scholar
  2. Bynum M.R and Smith W.K. (2001). Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae). American Journal of Botany 88: 1088–1095PubMedCrossRefGoogle Scholar
  3. Corbet S.A. and Plumridge J.R. (1985). Hydrodynamics and the germination of oil-seed rape pollen. Journal of Agricultural Research. 104: 445–451Google Scholar
  4. Cowling R.M., Esler K.J. and Rundel P.W. (1999). Namaqualand, South Africa - an overview of a unique winter-rainfall desert ecosystem. Plant Ecology 142: 3–21CrossRefGoogle Scholar
  5. Cowling R.M. and Pierce S.M. (1999). Namaqualand. A succulent desert. Fernwood Press, Cape Town, South AfricaGoogle Scholar
  6. Dafni A. (1996). Autumnal and winter pollination adaptations under Mediterranean conditions. Bocconea 5: 171–181Google Scholar
  7. Dafni A. and O’toole C. (1994). Pollination syndromes in the Mediterranean: generalizations and peculiarities. In: Arianoutsou M. and Groves R.H., (eds). Plant-animal interactions in mediterranean-type ecosystems. Kluwer, Dordrecht, Netherlands, pp. 125–135Google Scholar
  8. Daumann E. (1970). Zur Frage nach der Bestaeubung durch Regen (Ombrogamie). Preslia (Praha) 42: 220–224Google Scholar
  9. Dhingra H.R. and Varghese T.M. (1984). Effect of salt stress on viability, germination and endogenous levels of some metabolites and ions in maize (Zea mays L.) pollen. Annals of Botany 55: 415–420Google Scholar
  10. Desmet P.G. and Cowling R.M. (1999). The climate of the Karoo - a functional approach. In: Dean W.R.J. and Milton S.J., (eds)., The Karoo: ecological patterns and processes. Cambridge University Press, Cambridge, U.KGoogle Scholar
  11. Eisikowitch D. and Woodell S.R.J. (1975). The effect of water on pollen germination in two species of Primula. Evolution 28: 692–694CrossRefGoogle Scholar
  12. Esler K.J. and Rundel P.W. (1999). Comparative patterns of phenology and growth form diversity in two winter rainfall deserts: the Succulent Karroo and Mojave Desrt ecosystems. Plant Ecology 142: 97–104CrossRefGoogle Scholar
  13. Fægri K. and van der Pijl (1979). The Principles of Pollination Biology. Pergamon Press, Oxford, U.KGoogle Scholar
  14. Goldblatt P. (1991). An overview of the systematics, phylogeny and biology of the African Iridaceae. Contributions to the Bolus Herbarium 13: 1–74Google Scholar
  15. Goldblatt P., Bernhardt P. and Manning J.C. (1998). Pollination of petaloid geophytes by monkey beetles (Scarabaeidae: Rutelinae: Hopliini) in Southern Africa. Annals of the Missouri Botanical Garden 85: 215–230CrossRefGoogle Scholar
  16. Goldblatt P. and Manning J.C. (1998). Gladiolus in southern Africa. Fernwood Press, Cape Town, South AfricaGoogle Scholar
  17. Goldblatt P., Manning J.C. and Bernhardt P. (1995). Pollination biology of Lapeirousia subgenus Lapeirousia (Iridaceae) in southern Africa; floral divergence and adaptation for long-tongue fly pollination. Annals of the Missouri Botanical Gardens 82: 517–534CrossRefGoogle Scholar
  18. Iwanami Y. and Tsuji T. 1962. The opening and closing movements of the flower of Portulaca grandiflora. Bot. Mag. Tokyo 75: 443–448Google Scholar
  19. Jacobsen H. (1960). A handbook of succulent plants. Blandford Press, Dorset ,Great BritainGoogle Scholar
  20. Jacquemart A-L. (1996). Selfing in Narthecium ossifragum (Melanthiaceae). Plant Systematic Evolution 203: 99–110CrossRefGoogle Scholar
  21. Johnson S.D., Bond W.J. (1997). Evidence for widespread pollen limitation of fruiting success in Cape wildflowers. Oecologia 109: 530–534CrossRefGoogle Scholar
  22. Johnson S.D., Midgley J.J. (1997). Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots on the capitulum. American Journal of Botany 84: 429–436CrossRefGoogle Scholar
  23. Kerner A.J. (1902). The Natural History of plants. Henry Holt. New York., USAGoogle Scholar
  24. Knuth P. (1905). Knuth’s Handbook of Flower Pollination. Leipzig, GermanyGoogle Scholar
  25. Le Roux A., Perry P, Kyriacou X. (1989). South Africa. In: Orshan G. (eds). Plant phenomorphological studies in mediterranean type ecosystems. Kluwer, Dordrecht, Netherlands, pp. 159–346Google Scholar
  26. Milton S.J., Yeaton R.I., Dean W.R.J. and Vlok J.H.J. (1997). Succulent Karoo. In: Cowling R.M., Richardson D.M. and Pierce S.M., (eds). Vegetation of southern Africa. Cambridge University Press, Cambridge, U.K, pp. 131–166Google Scholar
  27. Percival M. (1949). Pollen presentation and pollen collection. New Phytologist 49: 40–64CrossRefGoogle Scholar
  28. Picker M.D., Midgley J.J. (1996). Pollination by monkey beetles (Coleoptera: Scarabaeidae: Hopliini): flower and colour preferences. African Entomology 4: 7–14Google Scholar
  29. Rundel P.W., Cowling R.M., Esler K.J., Mustart P.M., van Jaarsveld E. and Bezuidenhout H. (1995). Winter growth phenology and leaf orientation in the stem succulent Pachypodium namaquanum (Apocynaceae) in the Succulent Karoo of the Richtersveld, South Africa. Oecologia 101: 472–477CrossRefGoogle Scholar
  30. Simons P. (1992). The action plant: movement and nervous behaviour in plants. Blackwell, Oxford, UKGoogle Scholar
  31. Smith G.F., Chesselet P., van Jaarsveld E.J., Hartmann H., Hammer S., van Wyk B-E., Burgoyne P, Klak C. and Kurzweil H. (1998). Mesembs of the world. Briza, Pretoria, South AfricaGoogle Scholar
  32. Snijman D. 1984. The genus Haemanthus. J. S. Afr. Bot. Supplementary Volume No. 12Google Scholar
  33. Steiner K.E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Systematics and Evolution 209: 47–65CrossRefGoogle Scholar
  34. Stirton C.H. (1983). Nocturnal petal movements in Asteraceae. Bothalia 14: 1003–1006Google Scholar
  35. Struck M. (1994a). Phenology of flowering in permanent plots in the arid winter rainfall region of southern Africa. Bothalia 24: 77–90Google Scholar
  36. Struck M. (1994b). Flowers and their insect visitors in the arid winter rainfall region of southern Africa: observations on permanent plots. Insect visitation behaviour. Journal of Arid Environments 28: 51–74CrossRefGoogle Scholar
  37. Tanaka O., Tanaka Y. and Wada H. (1988). Photonastic and Thermonastic Opening of Capitulum in Dandelion, Taraxacum officinale and Taraxacum japonicum. Botanical Magazine Tokyo 101: 103–110CrossRefGoogle Scholar
  38. Tanaka O., Wada H., Yokoyama T. and Murakami H. (1987). Environmental Factors controlling Capitulum Opening and Closing of Dandelion, Taraxacum albidum. Plant Cell Physiology 28(4): 727–730Google Scholar
  39. van Rooyen M.W., Theron G.K. and Grobelaar N. (1979). Phenology of the vegetation in the Hester Malan Nature Reserve in the Namaqualand Broken Veld. General observations. Journal of South African Botany 45: 279–293Google Scholar
  40. Von Willert D.J., Werger M.J.A., Brinckmann E., Ihlenfeldt H.D. and Eller B.M. (1992). Life strategies of succulents in deserts: with special reference to the Namib Desert. Cambridge University Press, Cambridge U.KGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Leslie Hill Institute for Plant ConservationUniversity of Cape TownRondeboschSouth Africa
  2. 2.Terrestrial Ecology Research Unit, Department of BotanyUniversity of Port ElizabethPort ElizabethSouth Africa
  3. 3.Department of Ecology and Evolutionary BiologyIrvineUSA

Personalised recommendations