Plant Ecology

, Volume 184, Issue 1, pp 27–42 | Cite as

Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro

  • Andreas HempEmail author


Based on the analysis of 600 vegetation plots using the method of Braun-Blanquet (1964) the composition of the whole vascular forest plant flora with about 1220 species was studied in the forests of Mt. Kilimanjaro. The altitudinal distribution of all strata (trees, shrubs, epiphytes, lianas and herbs) along a transect of 2400 m is discussed with respect to altitudinal zonation and ecological factors. With uni-dimensionally constraint clustering significant discontinuities were revealed that occurred simultaneously in the different strata. Thus even in structurally highly complex, multilayered tropical montane forests distinct community units exist that can be surveyed and classified by the Braun-Blanquet approach. This observed zonation was significantly correlated with altitude, temperature and soil acidity (pH); rainfall was of importance in particular for the zonation of epiphytes. Other key factors were humidity (influenced by stable cloud condensation belts) and minimum temperature (in particular the occurrence of frost at 2700 m altitude upslope). The contrary results of other transect studies in East Africa in respect to continuity of change in floristic composition appear to be caused by different sampling methods and intensities or mixing of data from areas with different climate conditions, whereas species richness did not influence the clarity of floristic discontinuities on Kilimanjaro and other parts of East Africa.


Biodiversity Cloud forest East Africa Epiphytes Tropical montane forest Vegetation zonation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I gratefully acknowledge grants by the Deutsche Forschungsgemeinschaft, the Tanzanian Commission for Science and Technology for permitting research, Dr Stefan Dötterl (Bayreuth) for help with statistical problems and Prof Dr E. Beck (Bayreuth) for valuable comments on the manuscript.

For support in getting permits I owe gratitude to the Chief Park Wardens of Kilimanjaro National Park, Mr Moirana and Mr Mafuru, to the Catchment Forest officers and to my counterpart Mr Mushi (Tanzania Association of Foresters), Moshi. I further thank the keepers of the East African Herbarium, Nairobi, Dr Beatrice Khayota and Kew Herbarium, England, Prof Dr Owens for permission to study their collections and Dr Bernard Verdcourt (Kew, England), Quentin Luke and Simon Mathenge (both Nairobi) and Dr Ulrich Meve (Bayreuth) for help in identifying difficult species.


  1. Barkman J.J. (1973). Synusial approaches to classification. In: Whittaker R.H. (ed) Ordination and classification of communities. Handbook of vegetation science V. Junk, The Hague, pp. 437–491Google Scholar
  2. Beals E.W. (1969). Vegetational change along altitudinal gradients. Science165: 981–985PubMedCrossRefGoogle Scholar
  3. Beentje H.J. (1994). Kenya Trees, Shrubs and Lianas. National Museums of Kenya, NairobiGoogle Scholar
  4. Boughey A.S. 1955a. The vegetation of the mountains of Biafra. In: Proc. Linn. Soc. Lond. Session 165, 1952–1953. Pt. 2, pp. 144–150.Google Scholar
  5. Boughey A.S. (1955b). The nomenclature of the vegetation zones on the mountains of tropical Africa. Webbia 11: 413–423Google Scholar
  6. Braun-Blanquet J. (1964). Pflanzensoziologie. Springer, WienGoogle Scholar
  7. Bray J.R. and Curtis J.T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecol. Monographs 27: 325–349CrossRefGoogle Scholar
  8. Bruijnzeel L.A. and Veeneklaas E.J. (1998). Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 79: 3–9CrossRefGoogle Scholar
  9. Clutton-Brock T.H. and Gillett J.B. (1979). A survey of forest composition in the Gombe National Park, Tanzania. Afr. J. Ecol. 17: 131–158CrossRefGoogle Scholar
  10. Colwell R.K. and Hurtt G.C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144: 570–595CrossRefGoogle Scholar
  11. Curtis J.T. (1959). The vegetation of Wisconsin. An ordination of plant communities. Univ. of Wisconsin Press, MadisonGoogle Scholar
  12. Daubenmire R. (1966). Vegetation: Identification of typal communities. Science 151: 291–298PubMedCrossRefGoogle Scholar
  13. Frahm J.-P. (1994). Scientific results of the BRYOTROP Expedition to Zaire and Rwanda. 2. The altitudinal zonation of the bryophytes on Mt. Kahuzi, Zaire. Tropical Bryology 9: 153–167Google Scholar
  14. Friis I. and Lawesson J.E. (1993). Altitudinal zonation in the forest tree flora of Northeast tropical Africa. Opera Botanica 121: 125–127Google Scholar
  15. Friis I. (1992). Forest and forest trees of northeast tropical Africa – their natural habitats and distribution patterns in Ethiopia, Djibouti and Somalia. Kew Bulletin Additional Series XV. Her Majesty’s Stationery Office, LondonGoogle Scholar
  16. *FTEA (1952). Flora of Tropical East Africa. Royal Botanic Garden, KewGoogle Scholar
  17. Gentry A.H. and Dodson C.H. (1987a). Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19: 149–156CrossRefGoogle Scholar
  18. Gentry A.H. 1995. Patterns of diversity and floristic composition in neotropical montane forests. In: Churchill S.P., Balslev H., Forero E. and Lurteyn J.L. (eds), Biodiversity and Conservation of Neotropical Montane Forests. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New York Botanical Garden, pp. 103–126.Google Scholar
  19. Givnish T.J. (1999). On the causes of gradients in tropical tree diversity. J. Ecol. 87: 193–210CrossRefGoogle Scholar
  20. Grubb P.J. and Whitmore T.C. (1966). A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effects on the distribution and physiognomy of the forests. J. Ecol. 54: 303–333CrossRefGoogle Scholar
  21. Grubb P.J. (1971). Interpretation of the ‘Massenerhebung’ effect on tropical Mountains. Nature 229: 44–45CrossRefPubMedGoogle Scholar
  22. Grubb P.J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Ann. Rev. Ecol. Syst. 8: 83–107CrossRefGoogle Scholar
  23. Hall J.B. and Swaine M.D. (1976). Classification and ecology of closed-canopy forest in Ghana. J. Ecol. 64: 913–951CrossRefGoogle Scholar
  24. Hamilton A.C. (1975). A quantitative analysis of altitudinal zonation in Uganda forests. Vegetatio 30: 99–106CrossRefGoogle Scholar
  25. Hamilton A.C. and Perrott R.A. (1981). A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya/Uganda. Vegetatio 45: 107–125CrossRefGoogle Scholar
  26. Hamilton A.C., Ruffo C.K., Mwasha I.V., Mmari C. and Lovett J.C. 1989. A survey of forest types on the East Usambaras using the variable – area tree plot method. In: Hamilton A.C. and Bensted-Smith R. (eds), Forest Conservation in the East Usambara Mountains Tanzania. The IUCN Tropical Forest Programme, pp. 213–225.Google Scholar
  27. Hastenrath S.L. (1967). Rainfall Distribution and Regime in Central America. Archiv für Meteorologie, Geophysik und Bioklimatologie, Ser. B: Allgemeine und biologische Klimatologie 15(3): 201–241CrossRefGoogle Scholar
  28. Hastenrath S. (1973). Observations on the periglacial morphology of Mts. Kenya and Kilimanjaro, East Africa. Z. Geomorph. N. F. 16: 161–179Google Scholar
  29. Hedberg O. (1951). Vegetation belts of the East African mountains. Svensk Bot. Tidskrift. 45: 140–202Google Scholar
  30. Hemp A. and Beck E. (2001). Erica excelsa as a component of Mt. Kilimanjaro’s forests. Phytocoenologia 31: 449–475Google Scholar
  31. Hemp A. (2001a). Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part II: Habitat selection. Plant Biology 3: 493–523CrossRefGoogle Scholar
  32. Hemp A. 2001b. Life form and strategies of forest ferns on Mt. Kilimanjaro. In: Gottsberger G. and Liede S. (eds), Life Forms and Dynamics in Tropical Forests. Disserationes Botanicae 346, pp. 95–130.Google Scholar
  33. Hemp A. (2002a) Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part I: Altitudinal distribution. Plant Ecology 159: 211–239CrossRefGoogle Scholar
  34. Hemp A. 2002b. Fränkische Steppenheide, tropische Bergregenwälder – zwei gegensätzliche Florenregionen, eine gemeinsame Klassifikationsmethode? Habilitationsschrift, Universität Bayreuth.Google Scholar
  35. Hemp A. 2005a. The banana forests of Kilimanjaro: biodiversity and conservation of the Chagga home gardens. Biodiv. Conserv. Scholar
  36. Hemp A. (2005b). Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11: 1013–1023CrossRefGoogle Scholar
  37. Hemp A. (2005c) The impact of fire on diversity, structure and composition of Mt Kilimanjaro’s vegetation. In: Spehn E., Liberman M., Körner C. (eds) Land use changes and mountain biodiversity. CRC Press LLC, Boca Raton FL, USA (in press)Google Scholar
  38. Hemp A. (a). Altitudinal zonation and diversity patterns of the forests of Mt. Kilimanjaro. In: Bruijnzeel S. and Juvik J. (eds), Mountains in the Mist: Science for Conserving and Managing Tropical Montane Cloud Forests (In press).Google Scholar
  39. Hemp A. (b). Ecology and altitudinal zonation of pteridophytes on Mt. Kilimanjaro. Proceedings of the XVIIth AETFAT Congress 21–26 September 2003 (In press).Google Scholar
  40. Hemp A. (c). Kilimanjaro and its missing bamboo zone. Mountain Research and Development. (In press)Google Scholar
  41. Hemp C. (2001). Aerotegmina, a new genus of African Listroscelidinae (Orthoptera: Tettigoniidae, Listroscelidinae, Hexacentrini). Journal of Orthoptera Research 10: 125–132Google Scholar
  42. Hemp C. (2005). The Chagga home gardens – relict areas for endemic Saltatoria species (Insecta: Orthoptera) on Mt. Kilimanjaro. Biological Conservation 125: 203–210CrossRefGoogle Scholar
  43. Holdridge L.R. (1967). Life Zone Ecology. Tropical Science Center San José, Costa RicaGoogle Scholar
  44. Jacobsen W.B.G. and Jacobsen N.H.G. (1989). Comparision of the pteridophyte floras of Southern and Eastern Africa, with special reference to high-altitude species. Bull. Jard. Bot. Nat. Belg. 59: 261–317CrossRefGoogle Scholar
  45. Kessler M. and Bach K. (1999). Using indicator families for vegetation classification in species-rich Neotropical forests. Phytocoenologia 29: 485–502Google Scholar
  46. Kessler M. (2000). Altitudinal zonation of Andean cryptogam communities. J. Biogeog. 27: 275–282CrossRefGoogle Scholar
  47. Kitayama K. (1992). An altitudinal transect study of the vegetation on Mt. Kinabalu, Borneo. Vegetatio 102: 149–171CrossRefGoogle Scholar
  48. Kitayama K. and Mueller-Dombois D. (1992). Vegetation of the wet windward slope of Haleakala, Maui, Hawaii. Pacific Science 46: 197–220Google Scholar
  49. Kress W.J. (1986). The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22Google Scholar
  50. Kürschner H. (1990). Höhengliederung von epiphytischen Laub- und Lebermoosen in Nord-Borneo (Mt. Kinabalu). Nova Hedwigia 51: 77–86Google Scholar
  51. Lambrechts C., Woodley B., Hemp A., Hemp C. and Nnyiti P. (2002). Aerial survey of the threats to Mt. Kilimanjaro forests. UNDP, Dar es SalaamGoogle Scholar
  52. Lauer W. 1976. Klimatische Grundzüge der Höhenstufung tropischer Gebirge. Tagungsber. wiss. Abh. 40. dt. Geographentag Innsbruck, Wiesbaden, pp. 76–90.Google Scholar
  53. Lauer W., Rafiqpoor M.D. and Frankenberg P. (1996). Die Klimate der Erde. Eine Klassifikation auf ökophysiologischer Grundlage der realen Vegetation. Erdkunde 50: 275–300CrossRefGoogle Scholar
  54. Legendre P. and Legendre L. (1998). Numerical Ecology. 2nd English Edition. Developments in Environmental Modelling 20. Elsevier, AmsterdamGoogle Scholar
  55. Legendre P. and Vaudor A. 1991. The R Package: Multidimensional Analysis, Spatial Analysis. Département de sciences biologiques, Université de Montréal.Google Scholar
  56. Legendre P., Dallot S. and Legendre L. (1985). Succession of species within a community: Chronological clustering, with applications to marine and freshwater zooplankton. Am. Nat. 125: 257–288CrossRefGoogle Scholar
  57. Lieberman D., Lieberman M., Peralta R. and Hartshorn G.S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84: 137–152CrossRefGoogle Scholar
  58. Lind E.M. and Morrison M.E.S. (1974). East African Vegetation. Longman, LondonGoogle Scholar
  59. Lovett J.C. (1996). Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc mountains of Tanzania. J. Trop. Ecol. 12: 629–650CrossRefGoogle Scholar
  60. Lovett J.C. (1998). Continuous change in Tanzanian moist forest tree communities with elevation. J. Trop. Ecol. 14: 719–722CrossRefGoogle Scholar
  61. McIntosh R.P. (1967). The continuum concept of vegetation. Botan. Rev. 33: 130–187CrossRefGoogle Scholar
  62. Moravec J. (1989). Influences of the individualistic concept of vegetation on syntaxonomy. Vegetatio 81: 29–39CrossRefGoogle Scholar
  63. Moreau R.E. (1935). A synecological study of Usambara, Tanganyika Territory, with particular reference to birds. J. Ecol. 23: 1–43CrossRefGoogle Scholar
  64. Mueller-Dombois D. and Ellenberg H. (1974). Aims and methods of vegetation ecology. Wiley and Sons, New YorkGoogle Scholar
  65. Müller M.J. (1983). Handbuch ausgewählter Klimastationen der Erde. Forschungsstelle Bodenerosion der Universität Trier Mertesdorf (Ruwertal), TrierGoogle Scholar
  66. Pócs T. (1976) Bioclimatic studies in the Uluguru Mountains (Tanzania, East Africa). II. Correlations between orography, climate and vegetation. Acta Bot. Acad. Scient. Hungaricae 22(1/2): 163–183Google Scholar
  67. Pócs T. 1994. The altitudinal distribution of Kilimanjaro bryophytes. In: Seyani J.H. and Chikuni A.C. (eds), Proceedings of XIII Plenary Meeting AETFAT. Malawi, pp. 797–812.Google Scholar
  68. Richards P.W. (1996). The tropical rain forest. Cambridge Univ. Press, CambridgeGoogle Scholar
  69. Richter M. (1996). Klimatologische und pflanzenmorphologische Vertikalgradienten in Hochgebirgen. Erdkunde 50: 205–237CrossRefGoogle Scholar
  70. Thompson L.G., Mosley-Thompson E., Davis M.E., Henderson K.A., Brecher H.H., Zagorodnov V.S., Mashiotta T.A., Lin P.-N., Mikhalenko V.N., Hardy D.R. and Beer J. (2002). Kilimanjaro ice core records: Evidence of holocene climate change in tropical Africa. Science 298: 589–593CrossRefPubMedGoogle Scholar
  71. Tuomisto H. and Ruokolainen K. (1993). Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. J. Veg. Sci. 4: 25–34CrossRefGoogle Scholar
  72. Tuomisto H., Ruokolainen K., Kalliola R. Linna A., Danjoy W. and Rodriguez Z. (1995). Dissecting Amazonian Biodiversity. Science 269: 63–66PubMedCrossRefGoogle Scholar
  73. Tuomisto H., Ruokolainen K., Aguilar M. and Sarmiento A. (2003). Floristic patterns along a 43-km long transect in an Amazonian rain forest. J. Ecol. 91: 743–756CrossRefGoogle Scholar
  74. Van Steenis C.G.G.J. (1984). Floristic altitudinal zones in Malaysia. Bot. J. Linn. Soc. 89: 289–292CrossRefGoogle Scholar
  75. Vázquez G.J.A. and Givnish T.J. (1998). Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J. Ecol. 86: 999–1020CrossRefGoogle Scholar
  76. Walter H., Harnickell E. and Mueller-Dombois D. (1975). Climate-diagram maps of the individual continents and the ecological climatic regions of the earth. Springer, BerlinGoogle Scholar
  77. Walter H. and Lieth H. 1967. Klimadiagramm–Weltatlas. Jena.Google Scholar
  78. Whittaker R.H. (1962). Classification of natural communities. Bot. Rev. 28: 1–239CrossRefGoogle Scholar
  79. Whittaker R.H. (1967). Gradient analysis of vegetation. Biol. Rev. 49: 207–264CrossRefGoogle Scholar
  80. Woldu Z., Feoli E. and Nigatu L. (1989). Partitioning an elevation gradient of vegetation from southeastern Ethiopia by probabilistic methods. Vegetatio 81: 189–198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Lehrstuhl für PflanzenphysiologieUniversität BayreuthBayreuthGermany

Personalised recommendations