Plant Ecology

, Volume 184, Issue 1, pp 13–25

Alpine vascular plant species richness: the importance of daily maximum temperature and pH

  • C.M. Vonlanthen
  • P.M. Kammer
  • W. Eugster
  • A. Bühler
  • H. Veit
Article

Abstract

Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone.

Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.

Key words

Alpine vegetation Intermediate disturbance hypothesis Intermediate stress hypothesis Microclimate Soil nutrients Standing crop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschimann D. and Heitz C. 1996. Synonymie-Index der Schweizer Flora und der angrenzenden Gebiete (SISF). Rochat & Baumann, GenèveGoogle Scholar
  2. Beckage B. and Stout I.J. 2000. Effects of repeated burning on species richness in a Florida pine savanna: a test of the intermediate disturbance hypothesis. J. Vege. Sci. 11: 113–122CrossRefGoogle Scholar
  3. Callaway R.M., Brooker R.W., Choler P., Kikvidze Z., Lortie C.J., Michalet R., Paolini L., Pugnaire F.I., Newingham B., Aschehoug E.T., Armas C., Kikodze D., and Cook B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844–847PubMedCrossRefGoogle Scholar
  4. Chytrý M., Tichý L., and Roleček J. 2003. Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot. 38: 429–442CrossRefGoogle Scholar
  5. Collins S.L., Glenn S.M., and Gibson D.J. 1995. Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology 76: 486–492CrossRefGoogle Scholar
  6. Connell J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310PubMedCrossRefGoogle Scholar
  7. Ellenberg H. 1996. Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart (5. Auflage)Google Scholar
  8. Engle D.M., Palmer M.W., Crockett J.S., Mitchell R.L., and Stevens R. 2000. Influence of late season fire on early successional vegetation of an Oklahoma prairie. J. Vege. Sci. 11: 135–144CrossRefGoogle Scholar
  9. Ewald J. 2003. The calcareous riddle: why are there so many calciphilous species in the Central European flora?. Folia Geobot. 38: 357–366CrossRefGoogle Scholar
  10. FAL 1996. Schweizerische Referenzmethoden der Eidgenössischen Landwirtschaftlichen Forschungsanstalten. Band 1. Zürich ReckenholzGoogle Scholar
  11. Fayolle S., Cazaubon A., Comte K., and Franquet E. 1998. The intermediate disturbance hypothesis: application of this concept to the response of epilithon in a regulated Mediterranean river (Lower-Durance, southeastern France). Arch. Hydrobiol. 143: 57–77Google Scholar
  12. Fischer E. 2002. Globalstrahlungsmessung mit Solarzellen. Seminararbeit, Universität Bern (unpublished, copies can be obtained from the corresponding author)Google Scholar
  13. Flöder S. and Sommer U. 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114–1119CrossRefGoogle Scholar
  14. Foth H.D. 1990. Fundamentals in Soil Science 8. Wiley, New YorkGoogle Scholar
  15. Fox J.F. 1981. Intermediate levels of soil disturbance maximize alpine plant diversity. Nature 293: 564–565CrossRefGoogle Scholar
  16. Fox J.F. 1985. Plant diversity in relation to plant production and disturbance by voles in Alaskan tundra communities. Arct. Alp. Res. 17(2): 199–204CrossRefGoogle Scholar
  17. Gough L., Grace J.B., and Taylor L. 1994 The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271–279CrossRefGoogle Scholar
  18. Gough L., Shaver G.R., Carroll J., Royer D.L., and Laundre J.A. 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J. Ecol. 88: 54–66CrossRefGoogle Scholar
  19. Grabherr G. and Mucina L. (eds) 1993. Die Pflanzengesellschaften Österreichs. Teil 2. Natürliche waldfreie Vegetation. Fischer, JenaGoogle Scholar
  20. Grace J.B. 1999. The factors controlling species density in herbaceous plant communities: an assessment. Perspect. Plant Ecol. Evol. Syst. 2(1): 1–28CrossRefGoogle Scholar
  21. Grime J.P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347CrossRefGoogle Scholar
  22. Grime J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, ChichesterGoogle Scholar
  23. Grime J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed. Wiley, ChichesterGoogle Scholar
  24. Haynes R.J. 1986. The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Haynes R.J. (ed.), Mineral Nitrogen in the Plant–Soil System. Academic Press, Orlando, pp. 52–126Google Scholar
  25. Henry G.H.R. and Molau U. 1997. Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biol. 3(Suppl. 1): 1–9CrossRefGoogle Scholar
  26. Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65–70Google Scholar
  27. Horn H.S. 1975. Markovian properties of forest succession. In: Cody M.L. and Diamond J.M. (eds), Ecology and Evolution of Communities. MA, Belknap, Cambridge, pp. 196–211Google Scholar
  28. Imhof E. (Hrsg.) 1965–1978. Atlas der Schweiz. Bundesamt für Landestopographie, BernGoogle Scholar
  29. Kammer P.M. and Möhl A. 2002. Factors controlling species richness in Alpine plant communities. An assessment of the importance of stress and disturbance. Arct. Antarct. Alp. Res. 34(4): 398–407CrossRefGoogle Scholar
  30. Karlson R.H. and Hurd L.E. 1993. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12: 117–125CrossRefGoogle Scholar
  31. Komárková V. 1993. Vegetation type hierarchies and landform disturbance in arctic Alaska and alpine Colorado with emphasis on snowpatches. Vegetatio 106: 155–181Google Scholar
  32. Körner C. 1994. Impact of atmospheric changes on high mountain vegetation. In: Beniston M. (ed.), Mountain Environments in Changing Climates. Routledge, London, New York, pp. 155–166Google Scholar
  33. Körner C. 1999. Alpine Plant Life. Springer, BerlinGoogle Scholar
  34. Landolt E. and Urbanska K.M. 1989. Our Alpine Flora. Swiss Alpine Club, ChurGoogle Scholar
  35. Legendre P. and Legendre L. 1998. Numerical Ecology, 2nd ed. Elsevier, AmsterdamGoogle Scholar
  36. Mackey R.L. and Currie D.J. 2000. A re-examination of the expected effects of disturbance on diversity. Oikos 88: 483–493CrossRefGoogle Scholar
  37. Mittelbach G.G., Steiner C.F., Scheiner S.M., Gross K.L., Reynolds H.L., Waide R.B., Willig M.R., Dodson S.I., and Gough L. 2001. What is the observed relationship between species richness and productivity?. Ecology 82(9): 2381–2396CrossRefGoogle Scholar
  38. Müller P., Güsewell P., and Edwards P.J. 2003. Einfluss von Boden und Bewirtschaftung auf die Artenvielfalt der Vegetation auf Alpweiden im Glarnerland. Bot. Helvet. 113(1): 15–36Google Scholar
  39. Onipchenko V.G. and Semenova G.V. 1995. Comparative analysis of the floristic richness of alpine communities in the Caucasus and the Central Alps. J. Vege. Sci. 6: 299–304CrossRefGoogle Scholar
  40. Palmer M.W. 1994. Variation in species richness: towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica 29: 511–530Google Scholar
  41. Rosenzweig M.L. and Abramsky Z. 1993. How are diversity and productivity related? In: Ricklefs R.E. and Schluter D. (eds), Species Diversity in Ecological Communities. University of Chicago Press, Chicago, pp. 52–65Google Scholar
  42. Scheffer F. and Schachtschabel P. 1998. Lehrbuch der Bodenkunde. F. Enke, Stuttgart (14. Auflage)Google Scholar
  43. Sommer U. 1995. An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnol. Oceanogr. 40: 1271–1277CrossRefGoogle Scholar
  44. Stanton M.L., Rejmánek M., and Galen C. 1994. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the Mosquito Range, Colorado, U.S.A. Arct. Alp. Res. 26: 363–374CrossRefGoogle Scholar
  45. Tilman D., Wedin D., and Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720CrossRefGoogle Scholar
  46. Van der Welle M.E.W., Vermeulen P.J., Shaver G.R., and Berendse F. 2003. Factors determining plant species richness in Alaskan arctic tundra. J. Vege. Sci. 14(5): 711–720CrossRefGoogle Scholar
  47. Vonlanthen C., Bühler A., Veit H., Kammer P., and Eugster W. 2004. Charakterisierung ökologischer Standortfaktoren in alpinen Pflanzengemeinschaften. Naturforschende Gesellschaft Bern 61: 49–77Google Scholar
  48. Vonlanthen C.M., Kammer P.M., Eugster W., Bühler A., and Veit H. Alpine plant communities: an assessment of their relation to microclimatological, pedological, geomorphological, and other factors (submitted)Google Scholar
  49. Waide R.B., Willig M.R., Steiner C.F., Mittelbach G., Gough L., Dodson S.I., Juday G.P., and Parmenter R. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30(1): 257–300CrossRefGoogle Scholar
  50. Warnecke G. 1997. Meteorologie und Umwelt – eine Einführung. Springer, Berlin, Heidelberg (2. Auflage)Google Scholar
  51. White A.S., Witham J.W., Hunter J., Malcolm L., and Kimball A.J. 1999. Relationship between plant species richness and biomass in a coastal Maine Quercus-Pinus forest. J. Vege. Sci. 10: 755–762CrossRefGoogle Scholar
  52. White P.S. and Jentsch A. 2001. The Search for Generality in Studies of Disturbance and Ecosystem Dynamics. Progress in Botany 62. Springer, Berlin, pp. 399–449Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C.M. Vonlanthen
    • 1
  • P.M. Kammer
    • 2
  • W. Eugster
    • 3
  • A. Bühler
    • 1
  • H. Veit
    • 1
  1. 1.Institute of GeographyUniversity of BerneBerneSwitzerland
  2. 2.LLB S1 BiologyCanton and University of BerneBerneSwitzerland
  3. 3.Institute of Plant SciencesZürichSwitzerland

Personalised recommendations