Plant Ecology

, Volume 183, Issue 2, pp 329–336

Resistance of three co-occurring resprouter Erica species to highly frequent disturbance



The resistance to experimental, highly frequent disturbance has been analysed in three congeneric, strong-resprouter species (Erica australis, E. scoparia and E. arborea) that co-occur in heath-dominated communities of the northern side of the Strait of Gibraltar, southern Spain. To do so, mature individuals of the three species from a long undisturbed location were clipped at the ground level every sixth month during two years. The relationship between the resprouted biomass dry weight (as indicative of the resprouting vigour) and the upper surface area of the lignotuber along the experiment was established separately for each species at each clipping event by means of linear regressions analysis. The resprouting vigour of the three species was compared by means of independent one-way ANOVAs within each clipping event. Resprouting vigour decreased after recurrent clippings in the three species. Nevertheless, significant differences between species in this loss of resprouting vigour were detected, being E. scoparia the most resistant to the experimental, highly frequent clipping. It is concluded that experimental levels of recurrent disturbance may help to find out differences in resilience within similar (taxonomically, morfologically and/or ecologically), strong-resprouter plant species. Considering the history of forestry management in the nothern side of the Strait of Gibraltar, differences in this regard between the three Erica species may contribute to explain their somewhat segregated ecological distribution in this region.

Key words:

Erica arborea E. australis E. scoparia Mediterranean heathlands Resprouting vigour Strait of Gibraltar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubert G. (1977). Essai d’interprétation écologique de la répartition des Ericacées en Provence (région du Sud-est de la France). Ecologia Mediterranea 3: 113–123Google Scholar
  2. Aubert G. (1978) Relations entre le sol et cinq espèces d’ericacées dans le sud-est de la France. Oecolog Plantar 13: 253–269Google Scholar
  3. Austin M.P. (1985) Continuum concept, ordination methods and niche theory. Annual Review of Ecology and Systematics 16: 39–61CrossRefGoogle Scholar
  4. Bell T.L. and Pate J.S. (1996). Growth and fire response of selected Epacridaceae of south-western Australia. Australian Journal of Botany 44: 509–526CrossRefGoogle Scholar
  5. Benjamini Y. and Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289–300Google Scholar
  6. Bond W.J., and Midgley J.J. (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16: 45–51CrossRefPubMedGoogle Scholar
  7. Bond W.J. and van Wilgen B.W. (1996). Fire and Plants. Chapman and Halls, LondonGoogle Scholar
  8. Bond W.J., Smythe K.A. and Balfour D.A. (2001). Acacia species turnover in space and time in an African savannah. Journal of Biogeography 28: 117–128CrossRefGoogle Scholar
  9. Canadell J., Lloret F. and López-Soria L. (1991). Resprouting vigour of two Mediterranean shrub species after experimental fire treatments. Vegetatio 95: 119–126Google Scholar
  10. Canadell J. & López-Soria L. (1998) Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Functional Ecology 12: 31–38CrossRefGoogle Scholar
  11. Ceballos L., Martín-Bolaños M. (1930). Estudio sobre la vegetación forestal de la provincia de Cádiz. Instituto Forestal de Investigaciones y Experiencias, MadridGoogle Scholar
  12. Clemente A.S., Rego F.C. and Correia O.A. (1996) Demographic patterns and productivity of post-fire regeneration in portuguese Mediterranean maquis. International Journal of Wildland Fire 6: 5–12CrossRefGoogle Scholar
  13. Cruz A. and Moreno J.M. (2001). Seasonal course of total non-structural carbohydrates in the lignotuberous mediterranean-type shrub Erica australis. Oecologia 128: 343–350CrossRefGoogle Scholar
  14. Cruz A., Pérez B. and Moreno J.M. (2003). Resprouting of the Mediterranean-type srhub Erica australis with modified lignotuber carbohydrate content. Journal of Ecology 91: 348–356CrossRefGoogle Scholar
  15. de Benito N. (1948). Brezales y brezos. Instituto Forestal de Investigaciones y Experiencias, MadridGoogle Scholar
  16. Garcia L.V. (2003) Controlling the false discovery rate in ecological research. Trends in Ecology and Evolution 18: 553–554CrossRefGoogle Scholar
  17. Kays J.S. and Canham C.D. (1991). Effects of time and frequency of cutting on hardwood root reserves and sprout growth. Forest Science 37: 524–539Google Scholar
  18. Keeley J.E. (1986). Resilience of Mediterranean shrub communities to fires. In: Dell B., Hopkins A.J.M. and Lamont B.B. (eds) Resilience in Mediterranean-type ecosystems. Dr W Junk Publishers, Dordrecht, pp. 95–112Google Scholar
  19. Keeley J.E. and Zedler P.H. (1978) Reproduction of chaparral shrubs after fire: a comparison of sprouting and seeding strategies. American. Midland Naturalist 99: 142–161CrossRefGoogle Scholar
  20. le Maitre D.C., Jones C.A. and Forsyth G.G. (1992). Survival of eight woody sproutiing species following an autumn fire in Swartboskloof, Cape Province, South Africa. South African Journal of Botany 58: 405–413Google Scholar
  21. López-Soria L. and Castell C. (1992). Comparative genet survival after fire in woody Mediterranean species. Oecologia 91: 493–499CrossRefGoogle Scholar
  22. Lloret F. and López-Soria L. (1993). Resprouting of Erica multiflora after experimental fire treatments. Journal of Vegetation Science 4: 367–374CrossRefGoogle Scholar
  23. Moreno J.M., Cruz A. and Oechel W.C. (1999). Allometric relationshipin two lignotuberous species from mediterranean-type climate areas of Spain and California. Journal of Mediterranean Ecology 1: 49–60Google Scholar
  24. Moreno J.M. and Oechel W.C. (1991). Fire intensity and herbivory effects on postfire resprouting of Adenostoma fasciculatum in southern California chaparral. Oecologia 85: 429–433CrossRefGoogle Scholar
  25. Ojeda F., Arroyo J. and Marañón T. (1995). Biodiversity components and conservation of Mediterranean heathlands in Southern Spain. Biological Conservation 72: 61–72CrossRefGoogle Scholar
  26. Ojeda F., Arroyo J. and Marañón T. (2000a). Ecological distribution of four co-occurring Mediterranean heath species. Ecography 23:148–159CrossRefGoogle Scholar
  27. Ojeda F., Brun F.G. and Vergara J.J. 2005. Fire, rain, and the selection of seeder and resprouter life-histories in fire-recruiting, woody plants. New Phytologist 168: 155–165Google Scholar
  28. Ojeda F., Marañón T. and Arroyo J. (1996a) Patterns of ecological, chorological and taxonomic diversity at both sides of the Strait of Gibraltar. Journal of Vegetation Science 7: 63–72CrossRefGoogle Scholar
  29. Ojeda F., Marañón T. and Arroyo J. (1996b). Postfire regeneration of a mediterranean heathland in southern Spain. International Journal of Wildland Fire 6: 191–198CrossRefGoogle Scholar
  30. Ojeda F., Marañón T. and Arroyo J. (2000b). Plant biodiversity in the Aljibe Mountains (S. Spain): a comprehensive account. Biodiversity and Conservation 9: 1323–1343CrossRefGoogle Scholar
  31. Ojeda F., Simmons M.T., Arroyo J., Marañón T. and Cowling R.M. (2001). Biodiversity patterns in South African fynbos and Mediterranean heathland. Journal of Vegetation Science 12: 867–874CrossRefGoogle Scholar
  32. Pausas J.G. (1999). Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecology 140: 27–39CrossRefGoogle Scholar
  33. Pausas J.G., Bradstock R.A., Keith D.A., Keeley J.E. and GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085–1100Google Scholar
  34. Riba M. (1997). Effects of cutting and rainfall pattern on resprouting vigour and growth of Erica arborea L. Journal of Vegetation Science 8: 401–404CrossRefGoogle Scholar
  35. Riba M. (1998). Effects of intensity and frequency of crown damage on resprouting of Erica arborea L. (Ericaceae). Acta Oecologica 19:9–16CrossRefGoogle Scholar
  36. Torres E. and Montero G. (2000). Los alcornocales del Aljibe y sierras del Campo de Gibraltar. Miniterio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  37. Trabaud L. (1991). Fires regimes and phytomass growth dynamics in a Quercus coccifera garrigue. Journal of Vegetation Science 2:307–314CrossRefGoogle Scholar
  38. Vesk P.A. and Westoby M. (2004). Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology 92: 310–320CrossRefGoogle Scholar
  39. Vesk P.A., Warton D.I. and Westoby M. (2004). Sprouting by semi-arid plants: testing a dichotomy and predictive traits. Oikos 107: 72–89CrossRefGoogle Scholar
  40. Westman W.E. and O’Leary J.F. (1986). Measures of resilience: the response of coastal sage scrub to fire. Vegetatio 65: 179–189CrossRefGoogle Scholar
  41. Wildy D.T. and Pate J.S. (2002). Quantifing above- and bellow-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes. Annals of Botany 90: 185–197CrossRefPubMedGoogle Scholar
  42. Zammit C. 1988. Dynamics of resprouting in the lignotuberous shrub Banksia oblongifolia. Aust. J. Ecol. 13: 311–320Google Scholar
  43. Zedler P.H., Gautier C.R. and McMaster G.S. (1983). Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64: 809–818CrossRefGoogle Scholar
  44. Zar J.H. 1996. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de Biología, CASEMUniversidad de CádizPuerto RealSpain
  2. 2.Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)PaternaSpain

Personalised recommendations