Advertisement

Plant Ecology

, Volume 182, Issue 1–2, pp 209–233 | Cite as

Biomacromolecules of Algae and Plants and their Fossil Analogues

  • Jan W. de LeeuwEmail author
  • Gerard J. M. Versteegh
  • Pim F. van Bergen
Article

Abstract

A review of our current understanding of resistant biomacromolecules derived from present and past algae and higher plants is presented. Insight in the nature of recent and fossil macromolecules is strongly hampered by the difficulties in obtaining the material in pure and unaltered form. For the extant material, avoiding artificial condensation and structural alteration as a result of chemical isolation and purification of biomacromolecules requires constant attention. To date, several types of sporopollenin seem to occur. One type is characterised by oxygenated aromatic building blocks, in particular p-coumaric acid and ferrulic acid. The other type is thought to consist predominantly of an aliphatic biopolymer. In this review it is concluded that extant sporopollenin consists of the aromatic type, whereas the aliphatic component of fossil sporopollenin is due to early-diagenetic oxidative polymerization of unsaturated lipids. The cuticles of most higher plants contain the aliphatic biopolyester cutin. Additionally, cuticles of drought-adapted, mostly CAM plants, seem to contain the non-hydrolysable aliphatic biopolymer cutan. Only a very few algae are able to biosynthesize resistant, (fossilisable) cell walls: some Chlorophyta, Eustigmatophyta and Prasinophyta produce the aliphatic biopolymer algaenan. Some Dinophyta are also capable of producing algaenan cell walls. Additionally, some taxa produce highly resistant cyst-walls with a high proportion of aromatic moieties. For the morphologically well-preserved fossil material, contamination by organic particles other than the target taxon is hard to eliminate and can contribute to either the aliphatic or aromatic signal. Furthermore, post-mortem migration of aliphatic moieties into, and their condensation onto the macromolecule might occur, e.g. by oxidative polymerization. These phenomena hamper the evaluation of the aliphatic signature of fossil plant material and may for example explain the preservation of initially cutin-based cuticles or non-algaenan containing algae. The extent to which migration and in situ formation of aromatic moieties plays a role in modifying resistant algal macromolecules, notably under elevated temperature and/or pressure conditions, still remains an open question.

Keywords

Algaenan Biomacromolecule Diagenesis Fossil Recent Sporopollenin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aken, M.E., Pienaar, R.N. 1985Preliminary investigations on the chemical composition of the scale-boundary and cyst wall of Pyramimonas pseudoparkeae (Prasinophyceae)S. Afr. J. Bot.51408416Google Scholar
  2. Allard, B., Templier, J. 2000Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrencePhytochemistry54369380PubMedGoogle Scholar
  3. Allard, B., Templier, J. 2001High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimumPhytochemistry57459467PubMedGoogle Scholar
  4. Allard, B., Templier, J., Largeau, C. 1998An improved method for the isolation of artifact-free algaenans from microalgaeOrg. Geochem.28543548Google Scholar
  5. Arouri, K., Greenwood, P.F., Walter, M.R. 1999A possible chlorophycean affinity of some Neoproterozoic acritarchsOrg. Geochem.3013231337Google Scholar
  6. Arouri, K.R., Greenwood, P.F., Walter, M.R. 2000Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisationOrg. Geochem.317589Google Scholar
  7. Ashraf, M., Godward, M.B.E. 1980Ultrastructure and chemistry of the zygospore wall of SpirogyraAnn. Bot.46485487Google Scholar
  8. Atkinson, A.W.,Jr, Gunning, B.E.S., John, P.C.L. 1972Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry and incorporation of 14C-acetate, studied in synchronous culturesPlanta107132Google Scholar
  9. Batten, D.J. 1996Green and blue-green algae. Colonial ChlorococcalesJansonius, J.McGregor, D.C. eds. Palynolog: Principles and ApplicationsAASP FoundationSalt Lake City191203Google Scholar
  10. Batten, D.J., Grenfell, H.R. 1996Green and blue-green algae. BotryococcusJansonius, J.McGregor, D.C. eds. Palynology: Principles and ApplicationsAASP FoundationSalt Lake City205214Google Scholar
  11. Berkaloff, C., Casadevall, E., Largeau, C., Metzger, P., Peracca, S., Virlet, J. 1983The resistant polymer of the walls of the hydrocarbon-rich alga Botryococcus brauniiPhytochemistry22389397Google Scholar
  12. Bergen, P.F. 1994Palaeobotany of Propagules: An Investigation combining Microscopy and Chemistry. Ph.D. ThesisUniversity of LondonLondonGoogle Scholar
  13. Bergen, P.F., Blokker, P., Collinson, M.E., Sinninghe Damsté, J.S., Leeuw, J.W. 2004Structural biomacromolecules in plants. What can be learnt from the fossil record?Hemsley, A.R.Poole, I. eds. Evolution of Plant PhysiologyElsevierAmsterdam133154Google Scholar
  14. van Bergen P.F., Collinson M.E., Blokker P., Van Moerkerken P., Barrie P.J. and de Leeuw J.W. Chemical characterization of (fossil) sporopollenin: a molecular comparison of Azolla microspore massulae and Kurtzipites pollen with a review of previous literature, in pressGoogle Scholar
  15. Bergen, P.F., Collinson, M.E., Briggs, D.E.G., Leeuw, J.W., Scott, A.C., Evershed, R.P., Finch, P. 1995Resistant biomacromolecules in the fossil recordActa Bot. Neerl.44319345Google Scholar
  16. Bergen, P.F., Collinson, M.E., Leeuw, J.W. 1993Chemical composition and ultrastructure of fossil and extant salvinialean microspore massulae and megasporesGrana Suppl.11830Google Scholar
  17. Bertheas, O., Metzger, P., Largeau, C. 1999A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L. race)Phytochem.508596Google Scholar
  18. Biedlingmaier, S., Wanner, G., Schmidt, A. 1987A correlation between detergent tolerance and cell wall structure in green algaeZ. Naturforsch.42245250Google Scholar
  19. Binder, B.J., Anderson, D.M. 1990Biochemical composition and metabolic activity of Scripsiella trochoidea (Dinophyceae) resting cystsJ. Phycol.26289298Google Scholar
  20. Blokker, P. 2000Structural analysis of resistant polymers in extant algae and ancient sedimentsGeol. Ultratrajectina1931145Google Scholar
  21. Blokker, P., Schouten, S., Leeuw, J.W., Sinninghe Damsté, J.S., Ende, H. 1999Molecular structure of the resistant biopolymer in the zygospore cell walls of Chlamydomonas monoicaPlanta207539543Google Scholar
  22. Blokker, P., Schouten, S., Leeuw, J.W., Sinninghe Damsté, J.S., Ende, H. 2000A comparitive study of fossil and extant algaenans using ruthenium tetroxide degradationGeochim. Cosmochim. Acta6420552065Google Scholar
  23. Blokker, P., Schouten, S., Ende, H., Leeuw, J.W., Hatcher, P.G., Sinninghe Damsté, J.S. 1998aChemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanumOrg. Geochem.2914531468Google Scholar
  24. Blokker, P., Schouten, S., Ende, H., Leeuw, J.W., Sinninghe Damsté, J.S. 1998bCell wall specific ω-hydroxy fatty acids in freshwater green microalgaePhytochem.49691695Google Scholar
  25. Blokker, P., Bergen, P., Pancost, R., Collinson, M.E., Leeuw, J.W., Sinninghe Damsté, J.S. 2001The chemical structure of Gloeocapsamorpha prisca microfossils: Implications for their originGeochim. Cosmochim. Acta65885900Google Scholar
  26. Blom, A.V. 1936Quelques remarques sur le mécanisme de séchage des peintures à l'huilePeintures, Pigments, Vernis13156162Google Scholar
  27. Boom, A. 2004A Geochemical Study of Lacustrine Sediments: Towards Palao-climatic Econstructions of High Andean Biomes in ColombiaUniversity of AmsterdamAmsterdam125Google Scholar
  28. Boom A., Sinninghe Damsté J.S. and de Leeuw J.W. 2005. Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Org. Geochem. 36: 596–601Google Scholar
  29. Briggs, D.E.G., Kear, A.J., Baas, M., Leeuw, J.W., Rigby, S. 1995Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolitesLethaia281523Google Scholar
  30. Brunner, U., Honegger, R. 1985Chemical and ultrastructural studies on the distribution of sporopollenin like biopolymers in six genera of lichen phycobiontsCan. J. Bot.6322212230Google Scholar
  31. Burczyk, J. 1987aBiogenic relationships between ketocarotenoids and sporopollenins in green algaePhytochemistry26113119Google Scholar
  32. Burczyk, J. 1987bCell wall carotenoids in green algae which form sporopolleninsPhytochemistry26121128Google Scholar
  33. Burczyk, J., Šmietana, B., Terminska-Pabis, K., Zych, M., Kowalowski, P. 1999Comparison of nitrogen content amino acid composition and glucosamine content of cell walls of various chlorococcalean algaePhytochemistry51491497Google Scholar
  34. Butterfield, N.J., Rainbird, R.H. 1998Diverse organic-walled fossils, including 'possible dinoflagellates' from the early Neoproterozoic of arctic CanadaGeology26963966Google Scholar
  35. Collinson, M.E., Mösle, B., Finch, P., Scott, A.C., Wilson, R. 1998Structure, biosynthesis and biodegradation of cutin and suberinAncient Biomol.2251265Google Scholar
  36. Collinson, M.E., Bergen, P.F. 2004Evolution of angiosperm fruit and seed physiology: anatomical and chemical evidence from fossilsHemsley, A.R.Poole, I. eds. Evolution of Plant PhysiologyElsevierAmsterdam343377Google Scholar
  37. Collinson, M.E., Bergen, P.F., Scott, A.C., Leeuw, J.W. 1994The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plantsGeol. Soc. Spec. Publ.773170Google Scholar
  38. Combaz, A.,  et al. 1971Themal degradation of sporopollenin and genesis of hydrocarbonsBrooks, J. eds. SporopolleninAcademic PressLondon621653Google Scholar
  39. Corre, G., Templier, J., Largeau, C., Rousseau, B., Berkaloff, C. 1996Influence of cell wall composition on the resistance of two Chlorella species (Chlorophyta) to detergentsJ. Phycol.32584590Google Scholar
  40. Dale, B. 1976Cyst formation, sedimentation, and preservation: factors affecting dinoflagellate assemblages in recent sediments from TrondheimsfjordNorway. Rev. Palaeobot. Palynol.223960Google Scholar
  41. Dammers N. 2003. Chemical characterization of the organic-walled dinoflagellate cyst taxa Nematosphaeropsis labyrinthus, Polysphaeridium zoharii, Brigantedinium spp. and Palaeoperidinium spp. and a review on algaenan and dinosterol. Masters Thesis, Department of Geochemistry, Utrecht University, 43 ppGoogle Scholar
  42. Leeuw, J.W., Largeau, C. 1993A review of macromolecular compounds that comprise living organisms and their role in kerogen, coal and petroleum formationEngel, M.H.Macko, S.A. eds. Organic Geochemistry. Principles and ApplicationsPlenum PressNew York2372Google Scholar
  43. Vries, P.J.R., Simons, J., Beem, A.P. 1983Sporopollenin in the spore wall of Spirogyra (Zygnemataceae, Chlorophyceae)Acta Bot. Neerl.32252258Google Scholar
  44. Derenne, S., Largeau, C., Behar, F. 1994Low polarity pyrolysis products of Permian to Recent Botryoccus-rich sediments: first evidence for the contribution of an isoprenoid algaenan to kerogen formationGeochim. Cosmochim. Acta5837033711Google Scholar
  45. Derenne, S., Largeau, C., Berkaloff, C. 1996First example of an algaenan yielding an aromatic-rich pyrolysate. Possible geochemical implications on marine kerogen formationOrg. Geochem.24617627Google Scholar
  46. Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., Hatcher, P.G. 1992aNon-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotumPhytochemistry3119231929Google Scholar
  47. Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C., Rousseau, B. 1991Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: origin of ultralaminaeGeochim. Cosmochim. Acta5510411050Google Scholar
  48. Derenne, S., Largeau, C., Hetényi, M., Brukner-Wein, A., Conan, J., Lugardon, B. 1997Chemical structure of the organic matter in a Pliocene maar-type shale: implicated Botryococcus race strains and formation pathwaysGeochim. Cosmochim. Acta6118791889Google Scholar
  49. Derenne, S., Metzger, P., Largeau, C., Bergen, P.F., Gatellier, J.P., Sinninghe Damsté, J.S., Leeuw, J.W., Berkaloff, C. 1992Similar morphological and chemical variations of Gloeocapsomorpha prisca in Ordovician sediments and cultured Botryococcus braunii as a response to changes in salinityOrg. Geochem.19299313Google Scholar
  50. Deshmukh, A. P., Simpson, A.J., Hatcher, P.G. 1964Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopyPhytochemistry6411631170Google Scholar
  51. Domínguez, E., Mercado, J.A., Quesada, M.A., Heredia, A. 1999Pollen sporopollenin: degradation and structural elucidationSex. Plant Reprod.12171178Google Scholar
  52. Fensome, R.A.,  et al. 1993A Classification of Modern and Fossil DinoflagellatesSheridan PressHanover351Google Scholar
  53. Fensome, R.A., Saldarriaga, J.F., Taylor, F.J.R. 1999Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogeniesGrana386680Google Scholar
  54. Fjällström, P., Andersson, B., Nilsson, C., Andersson, K. 2002Drying of linseed oil paints: a laboratory study of aldehyde emissionsIndust. Crop. Prod.16173184Google Scholar
  55. Foster, C.B., Stephenson, M.H., Marshall, C., Logan, G.A., Greenwood, P.F. 2002A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinitiesPalynology263558Google Scholar
  56. Gabarayeva, N.I., Blackmore, S., Rowley, J.R. 2003Observations on the experimental destruction and substructural organisation of the pollen wall of some selected Gymnosperms and AngiospermsRev. Palaeobot. Palynol.124203226Google Scholar
  57. Geel, B., Grenfell, H.R. 1996Green and blue-green algae. Spores of ZygnemataceaeJansonius, J.McGregor, D.C. eds. Palynology: Principles and ApplicationsAASP FoundationSalt Lake City173179Google Scholar
  58. Gelin, F., Boogers, I., Noordeloos, A.A.M., Sinninghe Damsté, J.S., Riegman, R., Leeuw, J.W. 1997Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: Geochemical applicationsOrg. Geochem.26659675Google Scholar
  59. Gelin, F., Volkman, J.K., Largeau, C., Derenne, S., Sinninghe Damsté, J.S., Leeuw, J.W. 1999Distribution of aliphatic nonhydrolyzable biopolymers in marine microalgaeOrg. Geochem.30147159Google Scholar
  60. Good, B.H., Chapman, R.L. 1978The ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in the cell wallsAm. J. Bot.652733Google Scholar
  61. Goth, K., Leeuw, J.W., Püttmann, W., Tegelaar, E.W. 1988Origin of messel oil shale kerogenNature336759761Google Scholar
  62. Gray, J., Boucot, A.J. 1989Is Moyeria a euglenoid?Lethaia22447456Google Scholar
  63. Greenwood, P.F., Arouri, K.R., George, S.C. 2000Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MSGeochim. Cosmochim. Acta6412491263Google Scholar
  64. Guilford, W.J., Schneider, D.M., Labovitz, J., Opella, S.J. 1988High resolution solid state 13C NMR spectroscopy of sporopollenin from different plant taxaPlant Physiol.86134136PubMedGoogle Scholar
  65. Gunnison, D., Alexander, M. 1975Basis for the resistance of several algae to microbial decompositionAppl. Microbiol.29729738PubMedGoogle Scholar
  66. Guy-Ohlson, D. 1996Green and blue-green algae. PrasinophyceanalgaeJansonius, J.McGregor, D.C. eds. Palynology: Principles and ApplicationsAASP FoundationSalt Lake City181189Google Scholar
  67. Hartgers, W.A., Sinninghe Damsté, J.S., Leeuw, J.W. 1995Curie-point pyrolysis of sodium salts of functionalized fatty acidsJ. Anal. Appl. Pyrolysis34191217Google Scholar
  68. Hayatsu, R., Botto, R.E., Mcbeth, R.L., Scott, R.G., Winans, R.E. 1988Chemical alteration of a biological polymer 'sporopollenin' during coalification: origin, formation, and transformation of the coal maceral sporiniteEnergy Fuel2843847Google Scholar
  69. Hegewald, E., Deason, T.R. 1988Pseudoschroederia punctata (Chlorophyta, Chlorococcales), a new species with an unusual cell wallArch. Hydrobiol. Suppl.78465473Google Scholar
  70. Hegewald, E., Deason, T.R. 1989Pseudodidymocystis, a new genus of Scenedesmaceae (Chlorophyceae)Arch. Hydrobiol. Suppl.82119127Google Scholar
  71. Hemsley, A.R., Barrie, P.J., Chaloner, W.G., Scott, A.C. 1993The composition of sporopollenin and its use in living and fossil plant systematicsGrana Suppl.1211Google Scholar
  72. Hemsley, A.R., Barrie, P.J., Chaloner, W.G. 1994Studies of fossil and modern spore and pollen wall biomacromolecules using 13C solid state NMRNERC Spec. Publ.941519Google Scholar
  73. Holloway, P.J.,  et al. 1982The chemical constitution of plant cutinsCutler, D.F. eds. The Plant CuticleElsevierAmsterdam4585Google Scholar
  74. Honegger, R., Brunner, U. 1981Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigationCan. J. Bot.5927132734Google Scholar
  75. Hopkins, J.A., McCarthy, F.M.G. 2002Post-depositional palynomorph degradation in Quaternary shelf sediments: a laboratory experiment studying the effects of progressive oxidationPalynology26167184Google Scholar
  76. Hull, H.M., Hoshaw, R.W., Wang, J.-C. 1985Interpretation of zygospore wall structure and taxonomy of Spirogyra and Sirogonium (Zygnemataceae, Chlorophyta)Phycologia24231239Google Scholar
  77. Huss, V.A.R., Frank, C., Hartmann, E.C., Hirmer, M., Kloboucek, A., Seidel, B.M., Wenzeler, P., Kessler, E. 1999Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta)J. Phycol.35587598Google Scholar
  78. Javaux, E., Knoll, A.H., Walter, M. 2003Recognizing and interpreting the fossils of early eukaryotesOrigin. Life Evol. Biosph.337594Google Scholar
  79. Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C. 1988Resistant biopolymer in the outer walls of Botryococcus braunii, B racePhytochemistry27551557Google Scholar
  80. Kjellström, G. 1968Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheresGeol. Föreningens Stockholm Förhandl.90221228Google Scholar
  81. Knoll, A.H. 1992The early evolution of eukaryotes: a geological perspectiveScience256622627PubMedGoogle Scholar
  82. Knoll, A.H. 1996Archean and Proterozoic paleontologyJansonius, J.McGregor, D.C. eds. Palynology: Principles and ApplicationsAASP FoundationSalt Lake City5180Google Scholar
  83. Kokinos, J.P., Eglinton, T.I., Goñi, M.A., Boon, J.J., Martoglio, P.A., Anderson, D.M. 1998Characterisation of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cystOrg. Geochem.28265288Google Scholar
  84. Kolattukudy, P.E. 1981Structure, biosynthesis and biodegradation of cutin and suberinAnn. Rev. Plant Physiol32539576Google Scholar
  85. König, J., Peveling, E. 1980Vorkommen von sporopollenin in der zellwand des phycobionten TrebouxiaZ. Pflanzenphysiol.98459464Google Scholar
  86. König, J., Peveling, E. 1984Cell walls of the phycobionts Trebouxia and Pseudotrebouxia: constituents and their localisationLichenology16129144Google Scholar
  87. Kozubek, A., Tyman, J.H.P. 1999Resorcinolic lipids, the natural non-isoprenic amphiphiles and their biological activityChem. Rev.99126PubMedGoogle Scholar
  88. Kuypers, M.M.M., Blokker, P., Hopmans, E.C., Kinkel, H., Pancost, R.D., Schouten, S., Sinninghe Damsté, J.S. 2002Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1bPalaeogeogr. Palaeoclimatol. Palaeoecol.185211234Google Scholar
  89. Leppig, U., Montenari, M. 2000Organic-walled microfossils of possible dinoflagellate affinity from the Lower Permian of Sonora (northwest Mexico)Mar. Micropaleontol.4018Google Scholar
  90. Lewis, J., Harris, A.S.D., Jones, K.J., Edmonds, R.L. 1999Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samplesJ. Plankton Res.21343354Google Scholar
  91. Lille, Ü. 2003Current knowledge on the origin and structure of Estonian Kukersite kerogenOil Shale20253263Google Scholar
  92. Marchant, H.J. 1977Cell division and colony formation in the green alga Coelastrum (Chlorococcales)J. Phycol.13102110Google Scholar
  93. Marret, F. 1993Les effets de l'acétolyse sur les assemblages des kystes de dinoflagellésPalynoscience2267272Google Scholar
  94. McKinney, D.E., Bortiatynski, J.M., Carson, D.M., Clifford, D.J., Leeuw, J.W., Hatcher, P.G. 1996Tetramethylammonium hydroxide (TMAH) thermochemolysis of the aliphatic biopolymer cutan: insights into the chemical structureOrg. Geochem.24641650Google Scholar
  95. Metzger, P., Largeau, C. 1994A new type of ether lipid comprising phenolic moieties in Botryococcus braunii. Chemical structure and abundance, and geochemical implicationsOrg. Geochem.22801814Google Scholar
  96. Metzger, P., Largeau, C. 2002Natural polyacetalsMatsumura, S.Steinbüchel, A. eds. Miscellaneous Biopolymers and Biodegradation of Synthetic PolymersWiley-VCHWeinheim113127Google Scholar
  97. Moldowan, J.M., Dahl, J., Jacobson, S.R., Huizinga, B.J., Fago, F.J., Shetty, R., Watt, D.S., Peters, K.E. 1996Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestorsGeology24159162Google Scholar
  98. Montsant, A., Zarka, A., Boussiba, S. 2001Presence of a nonhydrolysable biopolymer in the cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae)Mar. Biotechnol.3515521PubMedGoogle Scholar
  99. Morrill, L.C., Loeblich, A.R.,III 1981The dinoflagellate pellicular wall layer and its occurrence in the division PyrrophytaJ. Phycol.17315323Google Scholar
  100. van Mourik A. 2000. Chemical characterization of fossil palynomorphs; gonyaulacoid, peridinioid dinoflagellate cysts and sporomorphs. Masters Thesis Department of Geochemistry, Utrecht University, 49 ppGoogle Scholar
  101. Mösle, B., Finch, P., Collinson, M.E., Scott, A.C. 1997Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectroscopy and electron microscopyJ. Anal. Appl. Pyrolysis40–41585597Google Scholar
  102. Mulder, M.M., Hage, E.R.E., Boon, J.J. 1992Analytical in source pyrolytic methylation electron impact mass spectrometry of phenolic acids in biological matricesPhytochem. Anal.3165172Google Scholar
  103. Müller, P.J., Kirst, G., Ruhland, G., Von Storch, I., Rosell-Melé, A. 1998Calibration of the alkenone paleotemperature index based on coretops from the eastern South Atlantic and global ocean (60°N-60°S)Geochim. Cosmochim. Acta6217571772Google Scholar
  104. Porcella, R.A., Walne, P.L. 1980Microarchitecture and envelope development in Dysmorphococcus globosus (Phacotaceae, Chlorophyceae)J. Phycol.16280290Google Scholar
  105. Puel, F., Largeau, C., Giraud, G. 1987Occurrence of a resistant biopolymer in the outer walls of the parasitic alga Prototheca wickerhamii (Chlorococcales): ultrastructure and chemical studiesJ. Phycol.23649656Google Scholar
  106. Rascio, N., Casadoro, G., Andreoli, C. 1979Ultrastructural features of Chlorella nana sp. novBot. Mar.22223227Google Scholar
  107. Rodríguez, M.C., Cerezo, A.S. 1996The resistant 'biopolymer' in cell walls of Coelastrum sphaericumPhytochemistry43731734Google Scholar
  108. Rodríguez, M.C., Noseda, M.D., Cerezo, A.S. 1999The fibrillar polysaccharides and their linkage to algaenan in the trilaminar layer of the cell wall of Coelastrum sphaericum (Chlorophyceae)J. Phycol.3510251031Google Scholar
  109. Rozema, J., Broekman, R.A., Blokker, P., Meijkamp, B.B., Bakker, N., Staaij, J., Beem, A., Ariese, F., Kars, S.M. 2001UV-B absorbance and UV-B absorbing compounds (para-cumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levelsJ. Photochem. Photobiol.62108117Google Scholar
  110. Rozema, J., Geel, B., Björn, L.O., Lean, J., Madronich, S. 2002Toward solving the UV puzzleScience29616211622PubMedGoogle Scholar
  111. Rullkötter, J. 1993The thermal alteration of kerogen and the formation of oilEngel, M.H.Macko, S.A. eds. Organic Geochemistry. Principles and ApplicationsPlenum PressNew York37796Google Scholar
  112. Sarjeant, W.A. 1978Arpylorus antiquus Calandra, emend., a dinoflagellate cyst from the Upper SilurianPalynol.2167179Google Scholar
  113. Schenck, P.A., Leeuw, J.W., Graas, G., Haverkamp, J., Bouman, M. 1981Analysis of recent spores and pollen and of thermally altered sporopollenin by flash pyrolysis-mass spectrometry and flash pyrolysis-gas chromatography-mass spectrometryBrooks, J. eds. Organic Maturation Studies and Fossil Fuel ExplorationAcademic PressLondon225237Google Scholar
  114. Schouten, S., Hopmans, E.C., Schefuss, E., Sinninghe Damsté, J.S. 2002Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?Earth Planet. Sci. Lett.204265274Google Scholar
  115. Schrank, E. 1988Effects of chemical processing on the preservation of peridinioid dinoflagellates: a case from the late cretaceous of NE AfricaRev. Palaeobot. Palynol.56123140Google Scholar
  116. Shaw, G.,  et al. 1971The chemistry of sporopolleninBrooks, J. eds. SporopolleninAcademic PressLondon305350Google Scholar
  117. Simpson, A.J., Zang, X., Kramer, R., Hatcher, P.G. 2003New insights on the structure of algaenan from Botryococcus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniquesPhytochem.62783796Google Scholar
  118. Sinninghe Damsté, J.S., Delas Heras, F.X.C., Bergen, P.F., Leeuw, J.W. 1993Characterization of tertiary catalan lacustrine oil shales: discovery of extremely organic sulphur-rich Type I kerogensGeochim. Cosmochim. Acta57389415Google Scholar
  119. Srivastava, A., Prasad, R. 2000Triglycerides-based diesel fuelsRenew. Sust. Energ. Rev.4111133Google Scholar
  120. Staehelin, L.A., Picket-Heaps, J.D. 1975The ultrastructure of Scenedesmus (Chlorophyceae). I. Species with the 'reticulate' or 'warty' type of ornamental layerJ. Phycol.11163185Google Scholar
  121. Stankiewicz, B.A., Briggs, D.E.G., Michels, R., Collinson, M.E., Flannery, M.B., Evershed, R.P. 2000Alternative origin of aliphatic polymer kerogenGeology28559562Google Scholar
  122. Strother, P.K. 1996AcritarchsJansonius, J.McGregor, D.C. eds. Palynology: principles and applicationsAASP FoundationSalt Lake City81106Google Scholar
  123. Swift, E., Remsen, C.C. 1970The cell wall of Pyrocystis spp. (Dinophyceae)J. Phycol.67986Google Scholar
  124. Syrett, P.J., Thomas, E.M. 1973The assay of nitrate reductase in whole cells of Chlorella: strain differences and the effect of cell wallsNew Phytol.7213071310Google Scholar
  125. Talyzina, N.M., Moldowan, J.M., Johannisson, A., Fago, F.J. 2000Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkersRev. Palaeobot. Palynol.1083753Google Scholar
  126. Tegelaar, E.W., Leeuw, J.W., Derenne, S., Largeau, C. 1989A reappraisal of kerogen formationGeochim. Cosmochim. Acta5331033106Google Scholar
  127. Tegelaar, E.W., Kerp, H., Visscher, H., Schenck, P.A., Leeuw, J.W. 1991Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticlesPaleobiology17133144Google Scholar
  128. Tiffany, L.H. 1924A physiological study of growth and reproduction among certain algaeOhio J. Sci.246599Google Scholar
  129. Turon, J.-L. 1984Le palynoplancton dans l'environnement actuel de l'Atlantique nord-oriental. Évolution climatique et hydrologique depuis le dernier maximum glaciaireMem. Inst. Geol. Bassin Aquitaine171313Google Scholar
  130. Versteegh, G.J.M., Blokker, P., Wood, G., Collinson, M.E., Sinninghe Damsté, J.S., Leeuw, J.W. 2004Oxidative polymerization of unsaturated fatty acids as a preservation pathway for microalgal organic matterOrg. Geochem.3511291139Google Scholar
  131. Versteegh, G.J.M., Jansen, J.H.F., Leeuw, J.W., Schneider, R.R. 2000Mid-chain diols and keto-ols in sediments. A new tool for tracing past sea surface water masses?Geochim. Cosmochim. Acta6418791892Google Scholar
  132. Versteegh, G.J.M., Zonneveld, K.A.F. 2002Use of selective degradation to separate preservation from productivityGeology30615618Google Scholar
  133. Warnaar J. 2001. Chemical characterization of fossil organic walled dinoflagellate cysts. Masters Thesis, Department of Geochemistry, Utrecht University. 26 ppGoogle Scholar
  134. Wehling, K., Niester, C., Boon, J.J., Willemse, M.T.M., Wiermann, R. 1989p-Coumaric acid – a monomer in the sporopollenin skeletonPlanta179376380Google Scholar
  135. Wicander, R., Foster, C.B., Reed, J.D. 1996Green and blue-green algae. GloeocapsomorphaJansonius, J.McGregor, D.C. eds. Palynology: Principles and ApplicationsAASP FoundationSalt Lake City215225Google Scholar
  136. Wurdack, M.E. 1923Chemical composition of the walls of certain algaeOhio J. Sci.23181191Google Scholar
  137. Yule, B.L., Roberts, S., Marchall, J.E.A. 2000The thermal evolution of sporopolleninOrg. Geochem.31859870Google Scholar
  138. Zárský, V., Kalina, T., Sulek, J. 1985Notes on the sexual reproduction of Chlamydomonas geitleri EttlArch. Protistenk.130343353Google Scholar
  139. Zelibor, J.L.,Jr, Romankiw, L., Hatcher, P.G., Colwell, R.R. 1988Comparitive analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by 13C nuclear magnetic resonance spectroscopyAppl. Env. Microbiol.5410511060Google Scholar
  140. Zhang, E., Hatcher, P.G., Davis, A. 1993Chemical composition of pseudo-phlobaphinite precursors: implications for the presence of aliphatic biopolymers in vitrinite from coalOrg. Geochem.20721734Google Scholar
  141. Zonneveld, K.A.F., Versteegh, G.J.M., de, Lange, G., J. 1997Preservation of organic walled dinoflagellate cysts in different oxygen regimes: a 10,000 years natural experimentMar. Micropaleontol.29393405Google Scholar
  142. Zonneveld, K.A.F., Versteegh, G.J.M., Lange, G.J. 2001Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropelMar. Geol.172181195Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jan W. de Leeuw
    • 1
    • 2
    • 3
    Email author
  • Gerard J. M. Versteegh
    • 1
    • 2
    • 4
  • Pim F. van Bergen
    • 5
  1. 1.Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  2. 2.Organic Geochemistry, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Palaeoecology, Faculty of BiologyUtrechtThe Netherlands
  4. 4.Hanse WissenschaftskollegDelmenhorstGermany
  5. 5.Shell Global Solutions InternationalAmsterdamThe Netherlands

Personalised recommendations