Advertisement

Plant Ecology

, 182:197 | Cite as

The Occurrence of p-coumaric Acid and Ferulic Acid in Fossil Plant Materials and their Use as UV-proxy

  • Peter BlokkerEmail author
  • Peter Boelen
  • Rob Broekman
  • Jelte Rozema
Article

Abstract

The applicability of p-coumaric acid and ferulic acid concentrations or ratios in (sub)fossil plant remnant as UV-B proxies relies on various aspects, which are discussed in this paper and will be illustrated with some experimental data. A newly developed THM-micropyrolysis–gas chromatography–mass spectrometry method was tested on various spores, pollen and other plant remains, which were analysed for the presence of the UV-absorbing compounds p-coumaric acid and ferulic acid. This revealed that these supposed building-blocks of sporopollenin appear to be present in pollen of many plant species but also in moss spores. The development of this micropyrolysis method paved the way for the quantitative analysis of UV-absorbing compounds in case only a small amount of analyte is available, for example for fossil pollen and spores but also other small palynomorphs and plant fossils. The use of this technique will provide a better insight in the plant responses to UV-radiation, the chemistry of pollen and spores, their fossil counterparts and furthermore the means for a further development of a proxy for the reconstruction of past UV-B radiation.

Key words

Cuticles Fossil plant materials Leaves Pollen Scales Seeds Spores Sporopollenin Stratospheric ozone 

Abbreviations

pCA

p-coumaric acid

DHP

dehydrogenation polymer

FA

ferulic acid

Fame

fatty acid methyl ester

FTIR

Fourier transform infrared

GC/MS

gas chromatography mass spectrometry

LOD

limit of detection

NMR

nuclear magnetic resonance

py

pyrolysis

SIM

selective ion monitoring

THM

thermally assisted hydrolysis and methylation

TIC

total ion current

TMAH

tetramethyl ammonium hydroxide

UV

ultraviolet

References

  1. Ahlers, F., Lambert, J., Wiermann, R. 1999aStructural elements of sporopollenin from the pollen of Torreya californica Torr. (Gymnospermae): Using the 1H-NMR techniqueZ. Naturforsch. C: Biosci.54492495Google Scholar
  2. Ahlers, F., Thom, I., Lambert, J., Kuckuk, R., Wiermann, R. 1999b1H NMR analysis of sporopollenin from Typha AngustifoliaPhytochemistry5010951098CrossRefGoogle Scholar
  3. Ahlers, F., Bubert, H., Steuernagel, S., Wiermann, R. 2000The nature of oxygen in sporopollenin from the pollen of Typha angustifolia LZ. Naturforsch. C: Biosci.55129136Google Scholar
  4. Ahlers, F., Lambert, J., Wiermann, R. 2003Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia LZ. Naturforsch. C: Biosci.58807811Google Scholar
  5. Barnes, J.D., Cardoso-Vilhena, J. 1996Interactions between electromagnetic radiation and the plant cuticleKerstiens, G. eds. Plant Cuticles and Intergrated Functional ApproachBIOS Scientific Publishers Ltd.Oxford157174Google Scholar
  6. Bennett, R.N., Wallsgrove, R.M. 1994Secondary metabolites in plant defense-mechanismsNew Phytol.127617633CrossRefGoogle Scholar
  7. Bergen, P.F., Bland, H.A., Horton, M.C., Evershed, R.P. 1997Chemical and morphological changes in archaeological seeds and fruits during preservation by desiccationGeochim. Cosmochim. Acta6119191930CrossRefGoogle Scholar
  8. Bergen, P., Blokker, P., Collinson, M.E., Sinninghe Damsté, J.S., Leeuw, J.W. 2004Structural biomacromolecules in plants: What can be learned from the fossil record?Hemsley, A.R.Poole, I. eds. Evolution in Plant PhysiologyElsevierAmsterdam133154Google Scholar
  9. Bergen, P.F., Collinson, M.E., Leeuw, J.W. 1993Chemical composition and ultrastucture of fossil and extant salvinialean microspore massulae and megasporesGranaSuppl. 11930Google Scholar
  10. Bergen, P.F., Collinson, M.E., Briggs, D.E.G., Leeuw, J.W., Scott, A.C., Evershed, R.P., Finch, P. 1995Resistant biomacromolecules in the fossil recordActa Bot. Neerl.44319342Google Scholar
  11. Blokker, P., Pel, R., Akoto, L., Brinkman, U.A.T., Vreuls, R.J.J. 2002At-line gas chromatographic–mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interfaceJ. Chromatogr. A959191201PubMedCrossRefGoogle Scholar
  12. Blokker P., Yeloff D., Boelen P., Broekman R.A. and Rozema J. 2005. Development of a proxy for past surface UV-B irradiation: A THM-py-GC/MS method for the analysis of pollen and spores. Anal. Chem. DOI: 10.1021/ac050696kGoogle Scholar
  13. Boom A. 2004. A geochemical study of lacustrine sediments: towards paleo-climatic reconstructions of high Andean biomes in Columbia. Doctorate Thesis, University of Amsterdam, AmsterdamGoogle Scholar
  14. Bornman, J.F. 1991UV-Radiation as an environmental-stress in plantsJ. Photochem. Photobiol. B8337340CrossRefGoogle Scholar
  15. Bornman, J.F., Vogelmann, T.C. 1988Penetration of blue and UV-radiation measured by fiber optics in spruce and fir needlesPhysiol. Plant72699705CrossRefGoogle Scholar
  16. Brooks, J., Shaw, G. 1972Geochemistry of sporopolleninChem. Geol.106987CrossRefGoogle Scholar
  17. Brooks, J., Shaw, G. 1978Sporopollenin: a review of its chemistry, palaeochemistry and geochemistryGrana179197CrossRefGoogle Scholar
  18. Bubert, H., Lambert, J., Steuernagel, S., Ahlers, F., Wiermann, R. 2002Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysisZ. Naturforsch. C: Biosci.5710351041Google Scholar
  19. Carnachan, S.M., Harris, P.J. 2000Ferulic acid is bound to the primary cell walls of all gymnosperm familiesBiochem. Syst. Ecol.28865879PubMedCrossRefGoogle Scholar
  20. Challinor, J.M. 1989A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymersJ. Anal. Appl. Pyrol.16323333CrossRefGoogle Scholar
  21. Chicaro, P., Pinto, E., Colepicolo, P., Lopes, J.L.C., Lopes, N.P. 2004Flavonoids from Lychnophora passerina (Asteraceae): potential antioxidants and UV-protectantsBiochem. Syst. Ecol.32239243CrossRefGoogle Scholar
  22. Crublet, M.-L., Long, C., Sevenet, T., Hadi, H.A., Lavaud, C. 2003Acylated flavonol glycosides from leaves of Planchonia grandis Phytochemistry64589594PubMedCrossRefGoogle Scholar
  23. Day, T.A., Neale, P.J. 2002Effects of UV-B radiation on terrestrial and aquatic primary producersAnnu. Rev. Ecol. Syst.33371396CrossRefGoogle Scholar
  24. Dominguez, E., Mercado, J.A., Quesada, M.A., Heredia, A. 1999Pollen sporopollenin: degradation and structural elucidationSex. Plant Reprod.12171178CrossRefGoogle Scholar
  25. Edwards, D. 2001Early land plantsBriggs, D.E.G.Crowther, P.R. eds. Palaeobiology IIBlackwell ScienceOxford6366Google Scholar
  26. Erdtman, G. 1960The acetolysis method, a revised descriptionSven. Bot. Tidskr.54561564Google Scholar
  27. Farman, J.C., Gardiner, B.G., Shanklin, J.D. 1985Large losses of total ozone in Antarctica reveal seasonal ClO x –NO x interactionNature315207210CrossRefGoogle Scholar
  28. Feng, H., An, L., Chen, T., Qiang, W., Xu, S., Zhang, M., Wang, X., Cheng, G. 2003The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition ([delta]13C) of two soybean cultivars (Glycine max) under field conditionsEnviron. Exp. Bot.4918CrossRefGoogle Scholar
  29. Freudenberg, K., Neish, A.C. 1968Lignins-Occurence, Formation, Structure and ReactionSpringer-VerlagBerlinGoogle Scholar
  30. Gehrke, C. 1998Effects of enhanced UV-B radiation on production-related properties of a Sphagnum fuscum dominated subarctic bogFunct. Ecol.12940947CrossRefGoogle Scholar
  31. Gubatz S., Rittscher M., Meuter A., Nagler A. and Wiermann R. 1993. Tracer Experiments on Sporopollenin Biosynthesis – an overview. Grana 12–17Google Scholar
  32. Guilford, W.J., Schneider, D.M., Labovitz, J., Opella, S.J. 1988High-resolution solid-state 13C-NMR-spectroscopy of sporopollenins from different plant taxaPlant Physiol.86134136PubMedCrossRefGoogle Scholar
  33. van der Hage E.R.E. 1995. Pyrolysis mass spectrometry of lignin polymers. Doctorate Thesis, University of Amsterdam, AmsterdamGoogle Scholar
  34. Haken, J.K. 2000Analytical pyrolysis of natural organic polymersJ. Chromatogr. A877241242CrossRefGoogle Scholar
  35. Hatcher, P.G., Minard, R.D. 1996Comparison of dehydrogenase polymer (DHP) lignin with native lignin from gymnosperm wood by thermochemolysis using tetramethylammonium hydroxide (TMAH)Org. Geochem.24593600CrossRefGoogle Scholar
  36. Hemsley, A.R., Barrie, P.J., Scott, A.C. 1995 13C solid-state N.M.R. spectroscopy of fossil sporopollenins. Variation in composition independent of diagenesisFuel7410091012CrossRefGoogle Scholar
  37. Hemsley, A.R., Scott, A.C., Barrie, P.J., Chaloner, W.G. 1996Studies of fossil and modern spore wall biomacromolecules using 13C solid state NMRAnn. Bot. (Lond.)788394Google Scholar
  38. Holloway P.J. 1982. The chemical constitution of plant cutins. In: Cutler D.F., Alvin K.L. and Price C.E. (eds), The plant Cuticle, Linnean Society Symposium Series 10, Academic Press, London, pp. 45–85Google Scholar
  39. Huang, S., Dai, Q., Peng, S., Chavez, A.Q., Miranda, L.L., Visperas, R.M., Vergara, B.S. 1997Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice (Oryza sativa L.)Plant Growth Regul.215964CrossRefGoogle Scholar
  40. Huang, Y., Stankiewicz, B.A., Eglinton, G., Snape, C.E., Evans, B., Latter, P.M., Ineson, P. 1998Monitoring biomacromolecular degradation of Calluna Vulgaris in a 23 year field experiment using solid state 13C-NMR and pyrolysis-GC/MSSoil Biol. Biochem.3015171528CrossRefGoogle Scholar
  41. Iiyama, K., Lam, T.B.T., Stone, B.A. 1990Phenolic acid bridges between polysaccharides and lignin in wheat internodesPhytochemistry29733737CrossRefGoogle Scholar
  42. Karunen, P., Kalviainen, E. 1988Lipids and hydroxycinnamic acids in cell-walls of Eriophorum vaginatum Phytochemistry2720452048CrossRefGoogle Scholar
  43. Kolattukudy, P.E. 1981Structure, biosynthesis, and biodegradation of cutin and suberinAnnu. Rev. Plant Physiol. Plant Mol. Biol.32539567Google Scholar
  44. Koning, J.A., Blokker, P., Jungel, P., Alkema, G., Brinkman, U.A.T. 2002Automated liner exchange – a novel approach in direct thermal desorptionChromatographia56185190Google Scholar
  45. Krauss, P., Markstadter, C., Riederer, M. 1997Attenuation of UV radiation by plant cuticles from woody speciesPlant Cell Environ.2010791085CrossRefGoogle Scholar
  46. Kroon, P.A., Williamson, G. 1999Hydroxycinnamates in plants and food: current and future perspectivesJ. Sci. Food Agric.79355361CrossRefGoogle Scholar
  47. Kuder, T., Kruge, M.A. 1998Preservation of biomolecules in sub-fossil plants from raised peat bogs – a potential paleoenvironmental proxyOrg. Geochem.2913551368CrossRefGoogle Scholar
  48. Kuroda, K.-I. 2000Pyrolysis-trimethylsilylation analysis of lignin: preferential formation of cinnamyl alcohol derivativesJ. Anal. Appl. Pyrol.567987CrossRefGoogle Scholar
  49. Laakso, K., Huttunen, S. 1998Effects of the ultraviolet-B radiation (UV-B) on conifers: a reviewEnviron. Pollut.99319328PubMedCrossRefGoogle Scholar
  50. Lam, T.B.T., Kadoya, K., Iiyama, K. 2001Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell wallsPhytochemistry57987992PubMedCrossRefGoogle Scholar
  51. Largeau, C., Leeuw, J.W. 1995Non-hydrolysable, aliphatic macromolecular constituents of microbial cell wallsJones, J.G. eds. Adv. Microb. Ecol.Plenum PressNew York416Google Scholar
  52. Leeuw, J.W., Largeau, C. 1993A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formationEngel, M.H.Macko, S.A. eds. Organic Geochemistry, Principles and Applications: Topics in GeobiologyPlenum PressNew York2372Google Scholar
  53. Leeuw, J.W., Bergen, P.F.V., Aarssen, B.G.K.V., Gatellier, J.-P.L.A., Sinninghe Damsté, J.S., Collinson, M.E. 1991Resistant biomacromolecules as major contributors to kerogenPhilos. Trans.: Biol. Sci.333329336Google Scholar
  54. Liakopoulos, G., Stavrianakou, S., Karabourniotis, G. 2001Analysis of epicuticular phenolics of Prunus persica and Olea europaea leaves: evidence for the chemical origin of the UV-induced blue fluorescence of stomataAnn. Bot. (Lond.)87641648Google Scholar
  55. Mahmood, U., Kaul, V.K., Acharya, R., Jirovetz, L. 2003 p-Coumaric acid esters from Tanacetum longifolium Phytochemistry64851853PubMedCrossRefGoogle Scholar
  56. Meijkamp, B.B., Aerts, R., Staaij, J., Tosserams, M., Ernst, W.H.O., Rozema, J. 1999Effects of UV-B on secondary metabolites in plantsRozema, J. eds. Stratospheric Ozone Depletion: The Effects of Enhanced UV-B Radiation on Terrestrial EcosystemsBackhuys publishersLeiden7199Google Scholar
  57. Meijkamp, B.B., Doodeman, G., Rozema, J. 2001The respons of Vicia faba to enhanced UV-B radiation inder low and near ambient PAR levelsPlant Ecol.154135156CrossRefGoogle Scholar
  58. Mösle, B., Finch, P., Collinson, M.E., Scott, A.C. 1997Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography–mass spectrometry and electron microscopyJ. Anal. Appl. Pyrol.40–41585597CrossRefGoogle Scholar
  59. Mösle, B., Collinson, M.E., Finch, P., Stankiewicz, B.A., Scott, A.C., Wilson, R. 1998Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examplesOrg. Geochem.2913691380CrossRefGoogle Scholar
  60. Mulder, M.M., Hage, E.R.E., Boon, J.J. 1992Analytical in source pyrolytic methylation electron-impact mass-spectrometry of phenolic-acids in biological matricesPhytochem. Anal.3165172Google Scholar
  61. Nicholson, R.L., Hammerschmidt, R. 1992Phenolic-compounds and their role in disease resistanceAnnu. Rev. Phytopathol.30369389CrossRefGoogle Scholar
  62. NiesterNyveld, C., Haubrich, A., Kampendonk, H., Gubatz, S., Tenberge, K.B., Rittscher, M., Wilmesmeier, S., Wiermann, R. 1997Immunocytochemical localization of phenolic compounds in pollen walls using antibodies against p-coumaric acid coupled to bovine serum albuminProtoplasma197148159CrossRefGoogle Scholar
  63. Olsson, L.C., Veit, M., Weissenbock, G., Bornman, J.F. 1998Differential flavonoid response to enhanced uv-b radiation in Brassica napus Phytochemistry4910211028CrossRefGoogle Scholar
  64. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., PEpin, L., Ritz, C., Saltzman, E., Stievenard, M. 1999Climate and atmospheric history of the past 420,000 years from the Vostok ice core, AntarcticaNature399429436CrossRefGoogle Scholar
  65. Ralph, J., Helm, R.F., Quideau, S., Hatfield, R.D. 1992Lignin feruloyl ester cross-links in grasses .1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymersJ. Chem. Soc. Perk. Trans.129612969CrossRefGoogle Scholar
  66. Robinson, S.A., Lovelock, C.E., Osmond, C.B. 1993Wax as a Mechanism for protection against photoinhibition – a study of cotyledon-OrbiculataBot. Acta106307312Google Scholar
  67. Rozema, J., Staaij, J., Bjorn, L.O., Caldwell, M. 1997UV-B as an environmental factor in plant life: stress and regulationTrends Ecol. Evol.122228CrossRefGoogle Scholar
  68. Rozema, J., Boelen, P., Blokker, P. 2005Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enchanced UV-B, an overview. EnvironPollut.137428442CrossRefGoogle Scholar
  69. Rozema, J., Broekman, R.A., Blokker, P., Meijkamp, B.B., Bakker, N., Staaij, J., Beem, A., Ariese, F., Kars, S.M. 2001UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levelsJ. Photochem. Photobiol. B62108117PubMedCrossRefGoogle Scholar
  70. Rozema, J., Bjorn, L.O., Bornman, J.F., Gaberscik, A., Hader, D.-P., Trost, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P. 2002aThe role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compoundsJ. Photochem. Photobiol. B66212CrossRefGoogle Scholar
  71. Rozema, J., Van Geel, B., Björn, L.O., Lean, J., Madronich, S. 2002bToward solving the UV puzzleScience29616211622CrossRefGoogle Scholar
  72. Saiz-Jimenez, C., Leeuw, J.W. 1984Pyrolysis-gas chromatography–mass spectrometry of isolated, synthetic and degraded ligninsOrg. Geochem.6417422CrossRefGoogle Scholar
  73. Sasaki, K., Takahashi, T. 2002A flavonoid from Brassica rapa flower as the UV-absorbing nectar guidePhytochemistry61339343PubMedCrossRefGoogle Scholar
  74. Schulze-Osthoff, K., Wiermann, R. 1987Phenols as integrated compounds of sporopollenin from Pinus pollenJ. Plant Physiol.131515Google Scholar
  75. Sinha, R.P., Klisch, M., Gröniger, A., Häder, D.-P. 2001Reponses of aquatic algae and cyanobacteria to solar UV-BPlant Ecol.154221236CrossRefGoogle Scholar
  76. Staehelin, J., Mader, J., Weiss, A.K., Appenzeller, C. 2002Long-term ozone trends in Northern mid-latitudes with special emphasis on the contribution of changes in dynamicsPhys. Chem. Earth, Parts A/B/C27461469CrossRefGoogle Scholar
  77. Sullivan, J.H., Gitz, D.C., Peek, M.S., McElrone, A.J. 2003Response of three eastern tree species to supplemental UV-B radiation: leaf chemistry and gas exchangeAgric. For. Meteorol.120219228CrossRefGoogle Scholar
  78. Tan, K.S., Hoson, T., Masuda, Y., Kamisaka, S. 1991Correlation between cell-wall extensibility and the content of diferulic and ferulic acids in cell-walls of Oryza sativa coleoptiles grown under water and in airPhysiol. Plant83397403CrossRefGoogle Scholar
  79. Tegelaar, E.W., Kerp, H., Visscher, H., Schenck, P.A., Leeuw, J.W. 1991Bias of the paleobotanical record as a consequence of variations in the chemical-composition of higher vascular plant cuticlesPaleobiology17133144Google Scholar
  80. Traverse, A. 1988PaleopalynologyUnwin HymanBostonGoogle Scholar
  81. Wehling, K., Niester, C., Boon, J.J., Willemse, M.T.M., Wierman, R. 1989 p-coumaric acid – a monomer in the sporopollenin skelletonPlanta179367380CrossRefGoogle Scholar
  82. Wierman, R., Ahlers, F., Schmitz-Thom, I. 2001SporopolleninHofrichter, M.Steinbüchel, A. eds. BiopolymersWeinheimWiley-VCH209227Google Scholar
  83. Yule, B.L., Roberts, S., Marshall, J.E.A. 2000The thermal evolution of sporopolleninOrg. Geochem.31859870CrossRefGoogle Scholar
  84. Zetzsche, F., Kälin, O. 1931Membranes of spores and pollen. V. Autoxidation of sporopolleninHelv. Chim. Acta14517519CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Peter Blokker
    • 1
    Email author
  • Peter Boelen
    • 1
  • Rob Broekman
    • 1
  • Jelte Rozema
    • 1
  1. 1.Department of Systems Ecology, Faculty of Earth and Life SciencesVrije Universiteit AmsterdamHV AmsterdamThe Netherlands

Personalised recommendations