Advertisement

Plant Ecology

, Volume 182, Issue 1–2, pp 1–10 | Cite as

Responses of Terrestrial Antarctic Ecosystems to Climate Change

  • P. Convey
  • R. I. L. Smith
Article

Key words

Alien species Antarctic Bryophyte Climate change Colonisation Microbiota Phanerogam Terrestrial ecosystem UV radiation 

Abstract

Antarctic terrestrial biota are generally limited by the inexorably linked environmental factors of low summer temperature and lack of available water. However, in parts of the Antarctic, both these factors are changing rapidly on contemporary timescales. Terrestrial biota have concurrently been faced with changes in the timing of UV-B maxima associated with spring ozone depletion. The region of the Antarctic Peninsula and Scotia Arc has experienced one of the most rapid rates of environmental warming seen worldwide over the last 30–50 years. Together with local changes in precipitation, this has resulted in a rapid reduction in extent and thinning of many ice-fields and glaciers, exposing new terrain for colonisation while, at the same time, altering patterns of water availability in terrestrial habitats. The rapid development of communities on newly-exposed ground is also facilitated by the existence of soil propagule banks, which contain propagules of both local and exotic origin. In this paper we collate and review evidence from a range of observational and manipulative studies that investigate the effect of climate change, especially increased temperature, on the processes of colonisation and subsequent community development by plants in the Antarctic. Biological changes that have been associated with climate change are visible in the form of expansions in range and local population numbers amongst elements of the flora. Environmental manipulation experiments further demonstrate the possibility of large and rapid species and community responses to climate amelioration, with many resident biota responding positively, at least in the absence of increased competition from exotic colonists. Manipulation studies are also starting to elucidate more subtle responses to climate changes, at levels ranging from cell biochemistry to habitat and food web structure. Integrating such subtle responses is vital to improving our ability to understand the consequences of climate change, as these may lead to much greater consequential impacts on communities and ecosystems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, H. and Adamson, E. 1992. Possible effects of global climate change on Antarctic terrestrial vegetation. In: Impact of Climate Change on Antarctica–Australia. Australian Government Publishing Service, Canberra, pp. 52–62.Google Scholar
  2. Allen, D.J., Nogués, S., Baker, N.R. 1998Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis?J. Exp. Bot.4917751788CrossRefGoogle Scholar
  3. Bargagli, R., Broady, P.A., Walton, D.W.H. 1996Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica)Antarct. Sci.8121126Google Scholar
  4. Barrow, C.J. 1978Postglacial pollen diagrams from South Georgia (sub-Antarctic) and West Falkland Island (South Atlantic)J. Biogeog.5251274Google Scholar
  5. Bergstrom, D.M., Chown, S.L. 1999Life at the front: history, ecology and change on southern ocean islandsTrends Ecol. Evol.14472476PubMedCrossRefGoogle Scholar
  6. Block, W. 1984Terrestrial microbiology, invertebrates and ecosystemsLaws, R.M. eds. Antarctic Ecology vol 1.Academic PressLondon163236Google Scholar
  7. Block, W. 1996Cold or drought – the lesser of two evils for terrestrial arthropods?Eur. J. Entomol.93325339Google Scholar
  8. Budd W.F. and Simmonds I. 1991. The impact of global warming on the Antarctic mass balance and global sea level. In: Weller G., Wilson C.L. and Severin B.A.B. (eds), Proceedings of the International Conference on the Role of Polar regions in Global Change.Google Scholar
  9. Caldwell, M.M., Flint, S.D. 1994Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystemsClim. Change28375394CrossRefGoogle Scholar
  10. Callaghan, T.V., Jonasson, S. 1995Arctic terrestrial ecosystems and environmental changePhil. Trans. R. Soc. Lond., A352259276Google Scholar
  11. Cockell, C.S., Knowland, J. 1999Ultraviolet radiation screening compoundsBiol. Rev.74311345PubMedCrossRefGoogle Scholar
  12. Convey, P. 1996aOverwintering strategies of terrestrial invertebrates from Antarctica – the significance of flexibility in extremely seasonal environmentsEur. J. Entomol.93489505Google Scholar
  13. Convey, P. 1996bThe influence of environmental characteristics on life history attributes of Antarctic terrestrial biotaBiol. Rev.71191225Google Scholar
  14. Convey, P. 1996cReproduction of Antarctic flowering plantsAntarct. Sci.8127134Google Scholar
  15. Convey, P. 1997Environmental change: possible consequences for life histories of Antarctic terrestrial biotaKorean J. Polar Res.8127144Google Scholar
  16. Convey, P. 2001aAntarctic EcosystemsLevin, S.A. eds. Encyclopedia of Biodiversity vol 1.Academic PressSan Diego171184Google Scholar
  17. Convey, P. 2001bTerrestrial ecosystem response to climate changes in the AntarcticWalther, G.-R.Burga, C.A.Edwards, P.J. eds. ‘Fingerprints’ of climate change – adapted behaviour and shifting species rangesKluwerNew York1742Google Scholar
  18. Convey, P. 2003Maritime Antarctic climate change: signals from terrestrial biologyDomack, E.Burnett, A.Leventer, A.Convey, P.Kirby, M.Bindschadler, R. eds. Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives Antarctic Research Series, vol. 79.American Geophysical UnionWashington D.C145158Google Scholar
  19. Convey, P., Wynn-Williams, D.D. 2002Antarctic soil nematode response to artificial environmental manipulationEur. J. Soil Biol.38255259CrossRefGoogle Scholar
  20. Convey, P., Block, W., Peat, H.J. 2003Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?Global Change Biol.917181730CrossRefGoogle Scholar
  21. Convey, P., Smith, R.I.L., Hodgson, D.A., Peat, H.J. 2000The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heatingJ. Biogeog.2712791295CrossRefGoogle Scholar
  22. Convey, P., Pugh, P.J.A., Jackson, C., Murray, A.W., Ruhland, C.T., Xiong, F.S., Day, T.A. 2002Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year periodEcology8331303140CrossRefGoogle Scholar
  23. Corner, R.W.M., Smith, R.I.L. 1973Botanical evidence of ice recession in the Argentine IslandsBr. Antarct. Surv. Bull.358386Google Scholar
  24. Danks, H.V. 1999Life cycles in polar arthropods – flexible or programmed?Eur. J. Entomol.9683102Google Scholar
  25. Day, T.A. 2001Multiple trophic levels in UV-B assessments – completing the ecosystemNew Phytol.152183186CrossRefGoogle Scholar
  26. Day, T.A., Ruhland, C.T., Xiong, F. 2001Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field studyJ. Photochem. Photobiol., B Biol.627887CrossRefGoogle Scholar
  27. Day, T.A., Ruhland, C.T., Grobe, C.W., Xiong, F. 1999Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the fieldOecologia1192435CrossRefGoogle Scholar
  28. Edwards, J.A. 1974Studies in Colobanthus quitensis (Kunth) Bartl and Deschampsia antarctica Desv.: VI: reproductive performance on Signy IslandBr. Antarct. Surv. Bull.396786Google Scholar
  29. Edwards, J.A. 1980An experimental introduction of vascular plants from South Georgia to the maritime AntarcticBr. Antarct. Surv. Bull.497380Google Scholar
  30. Edwards, J.A., Greene, D.M. 1973The survival of Falklands Island transplants at South Georgia and Signy Island, South Orkney IslandsBr. Antarct. Surv. Bull.33-343345Google Scholar
  31. Farman, J.C., Gardiner, B.G., Shanklin, J.D. 1985Large losses of total ozone in Antarctica reveal seasonal ClOx/Nox interactionNature315207210CrossRefGoogle Scholar
  32. Fenton, J.H.C. 1982Vegetation re-exposed after burial by ice and its relationship to changing climate in the South Orkney IslandsBr. Antarct. Surv. Bull.51247255Google Scholar
  33. Fiscus, E.L., Booker, F.L. 1995Is increased UV-B a threat to crop photosynthesis and productivity?Photosynth. Res.438192CrossRefGoogle Scholar
  34. Fowbert, J.A., Smith, R.I.L. 1994Rapid population increase in native vascular plants in the Argentine Islands, Antarctic PeninsulaArct. Alpine Res.26290296CrossRefGoogle Scholar
  35. Fox, A.J., Cooper, A.P.R. 1998Climate-change indicators from archival aerial photography of the Antarctic PeninsulaAnn. Glaciol.27636642Google Scholar
  36. Freckman, D.W., Virginia, R.A. 1997Low-diversity Antarctic soil nematode communities: distribution and response to disturbanceEcology78363369CrossRefGoogle Scholar
  37. Frenot, Y., Gloaguen, J.-C., Trehen, P. 1997Climate change in Kerguelen Islands and colonization of recently deglaciated areas by Poa kerguelensis and P. annuaBattaglia, B.Valencia, J.Walton, D.W.H. eds. Antarctic Communities: Species, Structure and Survival.Cambridge University PressCambridgeGoogle Scholar
  38. Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M., Bergstrom, D. 2005Biological invasions in the Antarctic: extent, impacts and implicationsBiol. Rev.804572PubMedCrossRefGoogle Scholar
  39. George, A.L., Murray, A.W., Montiel, P.O. 2001Tolerance of Antarctic cyanobacterial mats to enhanced UV radiationFEMS Microbiol. Ecol.3791101Google Scholar
  40. George, A.L., Peat, H.J., Buma, A.G.J. 2002Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful ultraviolet radiation in AntarcticaPhotochem. Photobiol.76274280PubMedCrossRefGoogle Scholar
  41. Gordon, J.E., Timmis, R.J. 1992Glacier fluctuations on South Georgia during the 1970s and early 1980sAntarct. Sci.4215226Google Scholar
  42. Grobe, C.W., Ruhland, C.T., Day, T.A. 1997A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperaturesArct. Alpine Res.29217221CrossRefGoogle Scholar
  43. Huiskes, A., Lud, D., Moerdijk-Poortvliet, T., Rozema, J. 1999Impact of UV-B radiation on Antarctic terrestrial vegetationRozema, J. eds. Stratospheric Ozone Depletion: the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems.BackuysLeidenGoogle Scholar
  44. Johnson, D., Campbell, C.D., Lee, J.A., Callaghan, T.V., Gwynne-Jones, D. 2002Arctic microorganisms respond more to elevated UV-B radiation than CO2 Nature4168283PubMedCrossRefGoogle Scholar
  45. Kennedy, A.D. 1993Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesisArct. Alpine Res.25308315CrossRefGoogle Scholar
  46. Kennedy, A.D. 1994Simulated climate change: a field manipulation study of polar microarthropod community response to global warmingEcography17131140Google Scholar
  47. Kennedy, A.D. 1995aAntarctic terrestrial ecosystem responses to global environmental changeAnn. Rev. Ecol. Syst.26683704CrossRefGoogle Scholar
  48. Kennedy, A.D. 1995bTemperature effects of passive greenhouse apparatus in high-latitude climate change experimentsFunct. Ecol.9340350Google Scholar
  49. Kennedy, A.D. 1995cSimulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations?Global Change Biol.12942CrossRefGoogle Scholar
  50. King, J.C., Harangozo, S.A. 1998Climate change in the western Antarctic Peninsula since 1945: observations and possible causesAnn. Glaciol.27571575Google Scholar
  51. King, J.C., Turner, J., Marshall, G.J., Connally, W.M., Lachlan-Cope, T.A. 2003Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental recordsDomack, E.BurnettA. Leventer, A.Convey, P.Kirby, M.Bindschadler, R. eds. Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives.Antarctic Research Series vol .79. American Geophysical UnionWashington D.C1730Google Scholar
  52. Lud, D., Huiskes, A.H.L., Moerdijk, T.C.W., Rozema, J. 2001The effects of altered levels of UV-B radiation on an Antarctic grass and lichenPlant Ecol.1548799CrossRefGoogle Scholar
  53. Lud, D., Moerdijk, T.C.W., Poll, W.H., Buma, A.G.J., Huiskes, A.H.L. 2002DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiationPlant Cell Environ.2515791589CrossRefGoogle Scholar
  54. Lud, D., Schlensog, M., Schroeter, B., Huiskes, A.H.L. 2003The influence of UV-B radiation on light-dependent photosynthetic performance in Sanionia uncinata (Hedw.) Loeske in AntarcticaPolar Biol.26225232Google Scholar
  55. Marshall, W.A. 1996Biological particles over AntarcticaNature383680CrossRefGoogle Scholar
  56. Marshall, W.A., Convey, P. 1997Dispersal of moss propagules in the maritime AntarcticPolar Biol.18376383CrossRefGoogle Scholar
  57. McGraw, J.B., Day, T.A. 1997Size and characteristics of a natural seed bank in AntarcticaArct. Alpine Res.29213216CrossRefGoogle Scholar
  58. Montiel, P., Smith, A., Keiller, D. 1999Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime AntarcticPolar Res.18229235Google Scholar
  59. Newsham, K.K. 2003UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis Oecologia135327331PubMedGoogle Scholar
  60. Newsham, K.K., Hodgson, D.A., Murray, A.W.A., Peat, H.J., Smith, R.I.L. 2002Response of two Antarctic bryophytes to stratospheric ozone depletionGlobal Change Biol.8972983CrossRefGoogle Scholar
  61. Noon, P.E., Birks, H.J.B., Jones, V.J., Ellis-Evans, J.C. 2001Quantitative models for reconstructing catchment ice-extent using physical-chemical characteristics of lake sedimentsJ. Paleolimnol.25375392CrossRefGoogle Scholar
  62. Paul, N. 2001Plant responses to UV-B: time to look beyond stratospheric ozone depletion?New Phytol.15058CrossRefGoogle Scholar
  63. Pugh, P.J.A., Davenport, J. 1997Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities JExp. Mar. Biol. Ecol.210121CrossRefGoogle Scholar
  64. Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C., Harrigan, P.R. 2002Extreme responses to climate change in Antarctic lakesScience295645PubMedCrossRefGoogle Scholar
  65. Quayle, W.C, Convey, P., Peck, L.S., Ellis-Evans, J.C., Butler, H.G., Peat, H.J. 2003Ecological responses of maritime Antarctic lakes to regional climate changeDomack, E.Burnett, A.Leventer, A.Convey, P.Kirby, M.Bindschadler, R. eds. Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives.Antarctic Research Series vol. 79. American Geophysical UnionWashington D.C159170Google Scholar
  66. Quesada, A., Mouget, J.L., Vincent, W.F. 1995Growth of Antarctic cyanobacteria under ultraviolet radiation – UVA counteracts UVB inhibitionJ. Phycol.31242248CrossRefGoogle Scholar
  67. Quesada, A., Goff, L., Karentz, D. 1998Effects of natural UV radiation on Antarctic cyanobacterial matsProc. NIPR Symp. Polar Biol.1198111Google Scholar
  68. Roberts, L. 1989Does the ozone hole threaten antarctic life?Science244288289PubMedGoogle Scholar
  69. Rousseaux, M.C., Ballaré, C.L., Giordano, C.V., Scopel, A.L., Zima, A.M., Szwarcberg-Bracchitta, M., Searles, P.S., Caldwell, M.M., Diaz, S.B. 1999Ozone depletion and UV-B radiation: impact on plant DNA damage in southern South AmericaProc. Natl. Acad. Sci. U.S.A.961531015315PubMedCrossRefGoogle Scholar
  70. Rozema, J. eds. 1999Stratospheric ozone depletion, the effects of enhanced UV-B radiation on terrestrial ecosystemsBackhuysLeidenGoogle Scholar
  71. Ruhland, C.T., Day, T.A. 2000Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in AntarcticaPhysiol. Plant.109244251CrossRefGoogle Scholar
  72. Searles, P.S., Kropp, B.R., Flint, S.D., Caldwell, M.M. 2001Influence of solar UV-B radiation on peatland microbial communities of southern ArgentinaNew Phytol.152213221CrossRefGoogle Scholar
  73. Skvarca, P., Rack, W., Rott, H., Ibarzábaly Donángelo, T. 1998Evidence of recent climatic warming on the eastern Antarctic PeninsulaAnn. Glaciol.27628632Google Scholar
  74. Smith, R.I.L. 1972Vegetation of the South Orkney Islands with particular reference to Signy IslandBr. Antarct. Surv. Sci. Reps.681124Google Scholar
  75. Smith, R.I.L. 1984Terrestrial Plant Biology of the Sub- Antarctic and AntarcticLaws, R.M. eds. Antarctic Ecology.Academic PressLondonGoogle Scholar
  76. Smith, R.I.L. 1987The bryophyte propagule bank of Antarctic fellfield soilsSymp. Biol. Hung.35233245Google Scholar
  77. Smith, R.I.L. 1990Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystemsKerry, K.R.Hempel, G. eds. Antarctic Ecosystems, Ecological Change and Conservation.Springer-VerlagBerlin3048Google Scholar
  78. Smith, R.I.L. 1991Exotic sporomorpha as inticators of potential immigrant colonists in AntarcticaGrana30313324CrossRefGoogle Scholar
  79. Smith, R.I.L. 1993The role of bryophyte propagule banks in primary succession: case study of an Antarctric fellfield soilMiles, J.Walton, D.W.H. eds. Primary Succession on LandBlackwellOxford5578Google Scholar
  80. Smith, R.I.L. 1994Vascular plants as indicators of regional warming in AntarcticaOecologia99322328CrossRefGoogle Scholar
  81. Smith, R.I.L. 1996Introduced plants in Antarctica: potential impacts and conservation issuesBiol. Conserv.76135146CrossRefGoogle Scholar
  82. Smith, R.I.L. 1999Biological and environmental characteristics of three cosmopolitan mosses dominant in continental AntarcticaJ. Veg. Sci.10231242CrossRefGoogle Scholar
  83. Smith, R.I.L. 2000Plant colonisation on a 45-year sequence of annual micromoraines on a South Georgia glacier forelandDavison, W.Howard-williams, C.Hawes, I. eds. Antarctic Ecosystems: Models for Wider Ecological Understanding.Caxton PressChristchurch225232Google Scholar
  84. Smith, R.I.L. 2001Plant colonization response to climate change in the Antarctic. Folia Fac. Sci. Nat. Univ. Masarykianae brunensis Geographia251933Google Scholar
  85. Smith, R.I.L. 2003The enigma of Colobanthus quitensis and Deschampsia antarctica in AntarcticaHuiskes, A.H.L.Gieskes, W.W.C.Rozema, J.Schorno, R.M.L.Vies, S.M.Wolff, W.J. eds. Antarctic Biology in a Global Context.BackhuysLeiden234239Google Scholar
  86. Smith, R.I.L., Coupar, A.M. 1987The colonization potential of bryophyte propagules in Antarctic fellfield sitesComité National Français des Recherches Antarctiques58189204Google Scholar
  87. Smith, V.R., Steenkamp, M. 1990Climatic change and its ecological implications at a sub-Antarctic islandOecologia851424CrossRefGoogle Scholar
  88. Sømme, L. 1995Invertebrates in Hot and Cold Arid EnvironmentsSpringer-VerlagBerlinGoogle Scholar
  89. Sullivan, J., Rozema, J. 1999UV-B effects on terrestrial plant growth and photosynthesisRozema, J. eds. Stratospheric ozone depletion, the effects of enhanced UV-B radiation on terrestrial ecosystems.BackhuysLeiden3957Google Scholar
  90. Turner, J., Colwell, S.R., Harangozo, S. 1997Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observationsJ. Geophys. Res.1021399914007CrossRefGoogle Scholar
  91. Vaughan, D.G., Marshall, G.J., Connolley, W.C., King, J.C., Mulvaney, R. 2001Devil in the detailScience29317771779PubMedCrossRefGoogle Scholar
  92. Vincent, W.F., Quesada, A. 1994Ultraviolet effects on cyanobacteria: implications for Antarctic microbial ecosystemsAntarct. Res. Ser.62111124Google Scholar
  93. Voytek, M.A. 1990Addressing the biological effects of decreased ozone on the Antarctic environmentAmbio195261Google Scholar
  94. Walther, G.-R., Post, E., Convey, P., Parmesan, C., Menzel, M., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O., Bairlein, F. 2002Ecological responses to recent climate changeNature416389395PubMedCrossRefGoogle Scholar
  95. Walton, D.W.H. 1984terrestrial environmentLaws, R.M. eds. Antarctic Ecology vol. 1.Academic PressLondon160Google Scholar
  96. Walton, D.W.H., Vincent, W.F., Timperley, M.H., Hawes, I., Howard-Williams, C. 1997Synthesis: polar deserts as indicators of changeLyons, W.B.Howard-Williams, C.Hawes, I. eds. Ecosystem Processes in Antarctic Ice-Free Landscapes.BalkemaRotterdamGoogle Scholar
  97. Wynn-Williams, D.D. 1993Microbial processes and the initial stabilisation of fellfield soilMiles, J.Walton, D.W.H. eds. Primary Succession on LandBlackwellOxfordGoogle Scholar
  98. Wynn-Williams, D.D. 1994Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: cyanobacteria, algae, and cryptogamsAntarct. Res. Ser.62243257Google Scholar
  99. Wynn-Williams, D.D. 1996Response of pioneer soil microalgal colonists to environmental change in AntarcticaMicrob. Ecol.31177188CrossRefGoogle Scholar
  100. Xiong, F.S., Day, T.A. 2001Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plantsPlant Physiol.125738751PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations