Plant Ecology

, Volume 187, Issue 2, pp 189–201 | Cite as

Fire Risk and Vegetation Structural Dynamics in Mediterranean Shrubland

  • M. J. Baeza
  • J. Raventós
  • A. Escarré
  • V. R. Vallejo
Article

Abstract

Phytomass structural characteristics are highly related to vegetation flammability. In fire-prone species like Mediterranean gorse, which accumulate standing dead fuel, susceptibility to fire is a function of fuel load, vegetation composition and fuel cover, and these characteristics change with time. Thus, for effective fuel control management, knowledge of the vegetation structural dynamics related to fire risk is crucial for preventing future fires. This study analyses structural dynamics in the above-ground phytomass of Ulex parviflorus shrublands in relation to different stages of flammability, i.e., the amount of time elapsed since the last fire. For this, 152 plants were cut from shrublands at different stages of development (young, mature and senescent), and various dimensional measurements were taken on each. The phytomass was separated into living or dead fuel fractions as well as into twigs or branches depending on the stem diameter. Basal diameter is the variable that best predicted Ulex parviflorus total phytomass as well as that of the different fractions. Both dimensional and phytomass variables increased with plant development. In the young shrublands Ulex parviflorus constitutes 54% of total phytomass, and Ulex parviflorus's dead twigs fraction accounts for 5% of total phytomass. In the mature and senescent shrublands, this species represents 80% of total shrubland phytomass, and dead twigs reach values greater than 40%. Our results show that structural changes in the fuel over short periods of time (young and mature) reveal critical periods in shrub development. Identification of these stages is a necessary tool for planning fuel control programmes.

Key words

Allometric relationships Development stages Fuel dynamics Phytomass Ulex parviflorus (Pourr) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini F.A. (1996). Iterative solution of the radiation transport equations governing spread of fire. Wildland Fire 32(5): 71–82Google Scholar
  2. Armand D., Etienne M., Legrand C., Marechal J. and Valette J.C. (1993). Phytovolumen, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann. Forest Sci. 50: 79–89Google Scholar
  3. Baeza M.J. 2001. Aspectos ecológicos y técnicas de control del combustible (roza y quema controlada) en matorrales con alto riesgo de incendio dominados por Ulex parviflorus (Pourr.). Ph. Thesis. Universidad de Alicante. http://www.cervantesvirtual.com/FichaObra.html?Ref=5920.Google Scholar
  4. Baeza M.J., Raventós J. and Escarré A. (2002). Factors influencing fire behaviour in shrubland of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manage. 65: 199–208PubMedCrossRefGoogle Scholar
  5. Begon M., Mortimer M. and Thompson D.J. 1996. Population Ecology. Blackwell Science Ltd.Google Scholar
  6. Bessie W.C. and Johnson E.A. (1995). The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76(3): 747–762CrossRefGoogle Scholar
  7. Bilgili E. (2003). Stand development and fire behavior. Forest Ecol. Manage. 179: 333–339CrossRefGoogle Scholar
  8. Bond W.J. (1996). Fire and Plants. Chapman & Hall, LondonGoogle Scholar
  9. Brown J.K. (1976). Estimating shrub biomass from basal stem diameters. Can. J. Forest Res. 6: 153–158CrossRefGoogle Scholar
  10. Brown J.K., Oberheu R.D. and Johnston C.M. 1982. Handbook for Inventorying Surface Fuels and Biomass in the Interior West. USDA. Int. For. and Ran. Exp. Sta. Gen. Tec. Rep. INT-129.Google Scholar
  11. Burgan R.E. and Rothermel R.C. 1984. BEHAVE: fire behavior prediction and fuel modeling system-Fuel subsystem. USDA. For.Serv.Gen.Tech.Rep. INT-167, Intermt. For. and Range Exp. Stn., Ogden, Utah.Google Scholar
  12. Burrows N.D. and McCaw W.L. (1990). Fuel characteristics and bushfire control in Banksia low woodlands in western Australia. J. Environ. Manage. 31: 229–236CrossRefGoogle Scholar
  13. Caswell H. (2001). Matrix Populations Models, Construction, Analisis and Interpretation. Sinauer, Massachusetts, USAGoogle Scholar
  14. Causton D.R. and Venus J.C. (1981). The Biometry of Plant Growth. Edward Arnold Publishers Ltd, LondonGoogle Scholar
  15. Chandler C., Cheney P., Thomas P., Trabaud L. and Williams D. (1983). Fire in forestry. In: (eds) Forest fire behavior and effects, pp. John Wiley & Sons, New YorkGoogle Scholar
  16. Countryman C.M. and Philpot C.W. 1970. Physical characteristics of chamise as a wildland fuel. USDA. For. Serv. Res. Pap. PSW-66.Google Scholar
  17. Crawley M.J. 1997. Life History and Environment. In: Crawley M.J. (ed), Plant Ecology. Blackwell Science Ltd. Rothermel R.C. and Philpot C.W. 1973. Predicting changes in.Google Scholar
  18. Díaz Barradas M.C., Mateos M.A., Orellana R., Zunzunegui M. and García Novo F. (1999). Changes in the canopy structure of the Mediterranean shrub Lavandula stoechas after disturbance. J. Veget. Sci. 10: 449–456CrossRefGoogle Scholar
  19. Dimitrakopoulos A.P. (2001). A statistical classification of Mediterranean species based on their flammability components. Int. J. Wildland Fire 10: 113–118CrossRefGoogle Scholar
  20. Doat J. and Valette J. CH. (1981). Le pouvoir calorifique supérior d’espèces forestières méditerranèennes. Ann. Forest Sci. 38(4): 469–486Google Scholar
  21. Eftichidis G., Varela V. and Margaritis E. 1998. Prometheus system: A modern approach for wildfire management in the Mediterranean ecosystems. In: Viegas D.X. (ed), Proceedings of the International Conference of Forest Fire Research. Vol. II, Luso-Coimbra, pp. 2349–2350.Google Scholar
  22. Elvira L.M. and Hernando C. 1989. Inflamabilidad y energía de las especies de sotobosque. Colección Monografías INIAno 68.Google Scholar
  23. Gray J.T. and Schlesinger H. (1981). Biomass, production and litterfall in the coastal sage scrub of Southern California. Am. J. Bot. 68(1): 24–33CrossRefGoogle Scholar
  24. Gray J.T. (1982). Community structure and productivity in Ceanothus chaparral and coastal sage scrub of Souther California. Ecol. Monographs 52(4): 415–435CrossRefGoogle Scholar
  25. Johnson E.A. (1992). Fire and vegetation dynamics: Studies from the North American boreal forest. Cambridge University Press, New YorkGoogle Scholar
  26. Johnson E.A. and Gutsell S.L. (1994). Fire frequency models, methods and interpretations. Adv. Ecol. Res. 25: 229–287Google Scholar
  27. Legrand C. 1990. Strategies of three obligate-seeder shrubs, Cistus albidus L., Ulex parvifiorus Pourr., Rosmarinus officinalis L. after wild fire. In: Viegas D.X. (ed), Proceedings of the International Conference of Forest Fire Research Coimbra.Google Scholar
  28. Malanson G.P. and Trabaud L. (1988). Computer simulations of fire behaviour in garrige in South France. Appl. Geography 8: 53–64CrossRefGoogle Scholar
  29. McCarthy M.A., Malcolm G. and Bradstock R.A. (2001). Theoretical fire-interval distributions. Int. J. Wildland Fire 10: 73–77CrossRefGoogle Scholar
  30. Papió C. and Trabaud L. (1990). Structural characteristics of fuel components of five Mediterranean shrubs. Forest Ecol. Manage. 35: 249–259CrossRefGoogle Scholar
  31. Papió C. and Trabaud L. (1991). Comparative study of the aerial structure of five shrubs of Mediterranean shrublands. Forest Sci. 37(1): 146–159Google Scholar
  32. Paysen T.E. and Cohen J.D. (1990). Chamise chaparral dead fuel fraction is not reliably predicted by age. Western J. Appl. Forestry 5: 127–131Google Scholar
  33. Pereira J.M., Sequeira N.M. and Carreiras J.M. (1995). Structural properties and dimensional relations of some Mediterranean shrub fuels. Int. J. Wildland Fire 5(1): 35–42CrossRefGoogle Scholar
  34. Riggan P.J., Goode S., Jacks P.M. and Lockwood R.N. (1988). Interaction of fire and community development in chaparral of southern California. Ecol. Monographs 58(3): 155–176CrossRefGoogle Scholar
  35. Rothermel R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA Forest Serv. Res. Pap. INT-115, 40 pp. Utah.Google Scholar
  36. Rothermel R.C. and Philpot C.W. (1973). Predicting changes in chaparral flammability. J. Forestry 71: 640–643Google Scholar
  37. Rothermel R.C., Wilson R.A., Morris G.A. and Sackett S.S. 1986. Modelling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system. USDA. For. Ser. Int. For. and Ran. Exp. Sta. Res Paper INT-359. 61 pp.Google Scholar
  38. Roy J. and Sonie L. (1992). Germination and populations dynamics of Cistus species in relation to fire. J. Appl. Ecol. 29: 647–655CrossRefGoogle Scholar
  39. Schlesinger W.H. and Gill D.S. (1978). Demographic studies of the chaparral shrubCeanothus megacarpus in the Santa Ynez Mountains, California. Ecology 59(6): 1256–1263CrossRefGoogle Scholar
  40. Schlesinger W.H. and Gill D.S. (1980). Biomass, production and changes in the availability of lightwaterand nutrients during the development of pure stands of the chaparral shrubCeanothus megacarpus after fire. Ecology 61(4): 781–789CrossRefGoogle Scholar
  41. Specht R.L. (1969). A comparison of the clerophyllous vegetation characteristic of Mediterranean type climates in FranceCalifornia and southern Australia: II. Dry matterenergy and nutrient accumulation. Aust. J. Bot. 17: 293–308CrossRefGoogle Scholar
  42. Sprugel D.G. (1983). Correcting for bias in log-transformed allometric equations. Ecology 64(1): 209–210CrossRefGoogle Scholar
  43. Tilman D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, New Jersey, USAGoogle Scholar
  44. Trabaud L. (1980). Impact biologique des feux de végétation sur l’organisation, la structure et l’évolution de la végétation des garrigues du Bas Languedoc. Thèse etat Univ. Sc. Tech, Languedoc, Montpellier, 288Google Scholar
  45. Trabaud L. (1994). The effect of fire on nutrient losses and cycling in a Quercus coccifera garrigue (southern France). Oecologia 99: 379–386CrossRefGoogle Scholar
  46. Trabaud L. and Lepart J. (1980). Diversity and stability in garrigue ecosystems after fire. Vegetatio 43: 49–57CrossRefGoogle Scholar
  47. Underwood A.J. (1997). Experiments in Ecology. Their Logical Design and Interpretation using Analysis of Variance. Cambridge University Press, UKGoogle Scholar
  48. Usó J.L., Mateu J., Karjalainen T. and Salvador P. (1997). Allometric regression equations to determine aerial biomasses of Mediterranean shrubs. Plant Ecol. 132: 59–69CrossRefGoogle Scholar
  49. Vallejo V.R. and Alloza J.A. (1998). The restauration of burned lands: The case of eastern Spain. In: Moreno, J.M. (eds) Large Forest Fires, pp 91–108. Backhuys Publishers, LeidenGoogle Scholar
  50. Van Wilgen B.W. (1982). Some effects of post-fire age on the above-ground plant biomass of fynbos (macchia) vegetation in South Africa. J. Ecol. 70: 217–225CrossRefGoogle Scholar
  51. Van Wilgen B.W. (1984). Adaptation of the United States fire danger rating system to fynbos conditions. Part.I. A fuel model for fire danger rating in the fynbos biome. South Afr. Forestry J. 129: 13–17Google Scholar
  52. Whelan R.J. (1995). The Ecology of Fire. Cambridge University Press, New YorkGoogle Scholar
  53. Whittaker R.H. and Woodwell G.M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven forestNew York. J. Ecol. 56: 1–25CrossRefGoogle Scholar
  54. Whittaker R.H. and Marks P.L. (1975). Methods of assessing primary productivity. In: Leith, H. and Whittaker, R.H. (eds) Primary Productivity of the Biosphere, pp. Springer-Verlag, New York, USAGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. J. Baeza
    • 1
  • J. Raventós
    • 1
    • 2
  • A. Escarré
    • 1
    • 2
  • V. R. Vallejo
    • 1
  1. 1.Centro de Estudios Ambientales del Mediterráneo (CEAM), Parque Tecnológico PaternaValenciaEspaña
  2. 2.Departamento de EcologíaUniversidad de AlicanteAlicanteEspaña

Personalised recommendations