Advertisement

Plant Ecology

, Volume 180, Issue 1, pp 105–116 | Cite as

Patterns of Primary Succession on the Foreland of Coleman Glacier, Washington, USA

  • Chad C. Jones
  • Roger del Moral
Article

Abstract

Patterns of community development vary among studied glacier forelands around the world. However, there have been few studies of primary succession on glacial forelands in temperate regions of North America. We described patterns in community composition, vegetation cover, diversity, and vegetation heterogeneity during primary succession on the foreland of Coleman Glacier, in Washington State, USA. Community composition changed rapidly with high turnover between age classes. Cover increased through succession as expected. Species richness and diversity were highest in early succession at small scales and in late succession at larger scales. At small scales, heterogeneity decreased in early succession but increased in mature sites. At larger scales, heterogeneity reached its lowest point earlier in succession. These scale-dependent patterns in diversity and heterogeneity differ from results of other studies of glacier forelands. We hypothesize that these patterns arise due to the development of a dense canopy of the deciduous shrub Alnus viridis followed by a dense canopy of Abies amabilis, Tsuga heterophylla, and Pseudotsuga menziesii.

Keywords

Diversity Heterogeneity Species richness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Analytical Software.2001Statistix 7 User's ManualAnalytical SoftwareTallahasseeFloridaUSAGoogle Scholar
  2. Alaback, P.B. 1982Dynamics of understory biomass in Sitka Spruce-Western Hemlock forests of southeast AlaskaEcology6319321948Google Scholar
  3. Birks, H.J.B. 1980The present flora and vegetation of the moraines of the Klutlan GlacierYukon Territory, CanadaQuaternary Res.146086CrossRefGoogle Scholar
  4. Boling, M., Frazier, B., Busacca, A. 1998General Soil Map – WashingtonDepartment of Crop and Soil Sciences, Washington State UniversityPullman, WAUSAGoogle Scholar
  5. Chapin, F.S., Walker, L.R., Fastie, C.L., Sharman, L.C. 1994Mechanisms of primary succession following deglaciation at Glacier Bay, AlaskaEcol. Monogr.64149175Google Scholar
  6. Christensen, N.L., Peet, R.K. 1984Convergence during secondary forest successionJ. Ecol.722536Google Scholar
  7. Connell, J.H. 1978Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non-equilibrium stateScience19913021310Google Scholar
  8. Cooper, W.S. 1923The recent ecological history of Glacier Bay, Alaska: II. The present vegetation cycleEcology4223246Google Scholar
  9. Daly, C., Neilson, R.P., Phillips, D.L. 1994A statistical-topographic model for mapping climatological precipitation over mountainous terrainJ. Appl. Meteorol.33140158CrossRefGoogle Scholar
  10. Daly, C., Taylor, G.H., Gibson, W.P. 1997The PRISM approach to mapping precipitation and temperatureReprints: 10th Conference on Applied ClimatologyAmerican Meteorological SocietyReno NV1012Google Scholar
  11. del Moral, R. 1998Early succession on Lahars spawned by Mount St HelensAm. J. Bot.85820828Google Scholar
  12. del Moral, R. 1999Predictability of primary successional wetlands on pumiceMount St. HelensMadroño47177186Google Scholar
  13. del Moral, R., Ellis, E.E. 2004Gradients in heterogeneity and structure on lahars, Mount St. Helens, Washington, USAPlant Ecol.175273286CrossRefGoogle Scholar
  14. del Moral, R., Jones, C. 2002Vegetation development on pumice at Mount St. Helens, USAPlant Ecol.162922CrossRefGoogle Scholar
  15. Dlugosch, K., del Moral, R. 1999Vegetational heterogeneity along elevational gradientsNorthwest Sci.731218Google Scholar
  16. Drury, W.H., Nisbit, I.C.T. 1973SuccessionJ. Arnold Arboretum54331368Google Scholar
  17. Elgersma, A.M. 1998Primary forest succession on poor sandy soils as related to site factorsBiodivers. Conserv.7193206CrossRefGoogle Scholar
  18. Elven, R., Ryvarden, L. 1975Dispersal and primary establishment of vegetationWielgolaski, F.E. eds. Fennoscandian Tundra Ecosystems, Part ISpringer VerlagBerlin8185Google Scholar
  19. ESRI 1999. ArcView 3.2. Environmental Systems Research Institute. Redlands, CaliforniaUSA.Google Scholar
  20. Fastie, C.L. 1995Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, AlaskaEcology7618991916Google Scholar
  21. Franklin, J.F., Dyrness, C.T. 1988Natural Vegetation of Oregon and WashingtonOregon State University PressCorvallis, Oregon, USAGoogle Scholar
  22. Goldin, A. 1992Soil Survey of Whatcom County AreaWashington.United States Department of Agriculture Soil, Conservation ServiceWashington, DC, USAGoogle Scholar
  23. Halpern, C.B., Spies, T.A. 1995Plant species diversity in natural and managed forests of the Pacific NorthwestEcol. Appl.5913934Google Scholar
  24. Harper, J.T. 1993Glacier terminus fluctuations on Mount BakerWashington, USA1940–1990, and climatic variationsArctic Alpine Res.25332340Google Scholar
  25. Heikkinen, O. 1984Dendrochronological evidence of variations of Coleman GlacierMount BakerWashington, USAArctic Alpine Res.165364Google Scholar
  26. Inouye, R.S., Huntly, N.J., Tilman, D., Tester, J.R., Stillwell, M., Zinnel, K.C. 1987Old-field succession on a Minnesota sand plainEcology681226Google Scholar
  27. Jumpponen, A., Mattson, K., Trappe, J.M., Ohtonen, R. 1998Effects of established willows on primary succession on Lyman Glacier forefrontNorth Cascade RangeWashington, U.S.A.: Evidence for simultaneous canopy inhibition and soil facilitationArctic Alpine Res.303139Google Scholar
  28. Kartesz J.T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canadaand Greenland. In: Kartesz, J.T. and Meacham C.A. (eds.)Synthesis of the North American FloraVersion 1.0., North Carolina Botanical Garden, Chapel Hill, NC, USA.Google Scholar
  29. Kovach, W.L. 1998MVSP-a multivariate statistical package for Windows, version 3.1.Kovach Computing ServicesPentraethWales, U.KGoogle Scholar
  30. Lepš, J., Rejmánek, M. 1991Convergence or divergence: what should we expect from vegetation succession?Oikos62261264Google Scholar
  31. Matthews, J.A. 1992The Ecology of Recently-deglaciated Terrain: A Geoecological Approach to Glacier Forelands and Primary SuccessionCambridge University PressCambridgeUKGoogle Scholar
  32. McCune, B., Grace, J.B. 2002Analysis of Ecological CommunitiesMjM Software Design, Gleneden BeachOregon, USAGoogle Scholar
  33. McCune, B., Mefford, M.J. 1999PC-ORD. Multivariate Analysis of Ecological DataVersion 4MjM Software Design, Gleneden BeachOregon, USAGoogle Scholar
  34. Messer, A.C. 1988Regional variations in rates of pedogenesis and the influence of climatic factors on moraine chronosequences, Southern NorwayArctic Alpine Res.203139Google Scholar
  35. Odum, E.P. 1969The strategy of ecosystem developmentScience164262270PubMedGoogle Scholar
  36. Oliver, C.D., Adams, A.B., Zasoski, R.J. 1985Disturbance patterns and forest development in a recently deglaciated valley in the northwestern Cascade Range of Washington, U.S.ACan. J. For. Res.15221232Google Scholar
  37. Peet, R.K. 1978Forest vegetation of Colorado Front Range – patterns of species diversityVegetatio376578CrossRefGoogle Scholar
  38. Peet, R.K. 1992Community structure and ecosystem functionGlenn-Lewin, D.C.Peet, R.K.Veblen, T.T. eds. Plant Succession: Theory and PredictionChapman & HallLondon, UK103151Google Scholar
  39. Persson, Å. 1964The vegetation at the margin of the receding glacier Skaftafellsjökull, southeastern IcelandBotaniska Notiser117323354Google Scholar
  40. Prach, K., Pyšek, P., Šmilauer, P. 1993On the rate of successionOikos66343346Google Scholar
  41. Reiners, W.A., Worley, I.A., Lawrence, D.B. 1971Plant diversity in a chronosequence at Glacier Bay, AlaskaEcology525569Google Scholar
  42. Roberts, M.R., Gilliam, F.S. 1995Patterns and mechanisms of plant diversity in forested ecosystems – implications for forest managementEcol. Appl.5969977Google Scholar
  43. Rydin, H., Borgegård, S.O. 1988Plant species richness on islands over a century of primary succession – Lake HjålmarenEcology69916927Google Scholar
  44. Vetaas, O.R. 1994Primary succession of plant assemblages on a glacier foreland – Bodalsbreen, Southern NorwayJ. Biogeogr.21297308Google Scholar
  45. Vitt, D.H., Marsh, J.E., Bovey, R.B. 1988Mosses, Lichens, and Ferns of Northwest North AmericaLone Pine Publishing, EdmontonAbertaCanadaGoogle Scholar
  46. Walker, L.R., del Moral, R. 2003Primary Succession and Landscape RestorationCambridge University PressCambridgeUKGoogle Scholar
  47. Whittaker, R.J., Bush, M.B., Richards, K. 1989Plant recolonization and vegetation succession on the Krakatau Islands, IndonesiaEcol. Monogr.5959123Google Scholar
  48. Zollitsch, B. 1969Die vegetationsentwicklung im PasterzenvorfeldWissenschaftliche Alpenvereinsheft21267290Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations