User Modeling and User-Adapted Interaction

, Volume 29, Issue 4, pp 821–867 | Cite as

Automated gaze-based mind wandering detection during computerized learning in classrooms

  • Stephen HuttEmail author
  • Kristina Krasich
  • Caitlin Mills
  • Nigel Bosch
  • Shelby White
  • James R. Brockmole
  • Sidney K. D’Mello


We investigate the use of commercial off-the-shelf (COTS) eye-trackers to automatically detect mind wandering—a phenomenon involving a shift in attention from task-related to task-unrelated thoughts—during computerized learning. Study 1 (N = 135 high-school students) tested the feasibility of COTS eye tracking while students learn biology with an intelligent tutoring system called GuruTutor in their classroom. We could successfully track eye gaze in 75% (both eyes tracked) and 95% (one eye tracked) of the cases for 85% of the sessions where gaze was successfully recorded. In Study 2, we used this data to build automated student-independent detectors of mind wandering, obtaining accuracies (mind wandering F1 = 0.59) substantially better than chance (F1 = 0.24). Study 3 investigated context-generalizability of mind wandering detectors, finding that models trained on data collected in a controlled laboratory more successfully generalized to the classroom than the reverse. Study 4 investigated gaze- and video- based mind wandering detection, finding that gaze-based detection was superior and multimodal detection yielded an improvement in limited circumstances. We tested live mind wandering detection on a new sample of 39 students in Study 5 and found that detection accuracy (mind wandering F1 = 0.40) was considerably above chance (F1 = 0.24), albeit lower than offline detection accuracy from Study 1 (F1 = 0.59), a finding attributable to handling of missing data. We discuss our next steps towards developing gaze-based attention-aware learning technologies to increase engagement and learning by combating mind wandering in classroom contexts.


Eye-gaze Cyberlearning Intelligent tutoring systems Mind wandering Attention-aware learning 



This research was supported by the National Science Foundation (NSF) (DRL 1235958 and IIS 1523091). Any opinions, findings and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF. Thanks to fellow lab members for their assistance in the data collection, to the students for their valuable feedback and to our teacher consultant (not named to protect student privacy) for welcoming us into their classroom.


  1. Ahmidi, N., Hager, G. D., Ishii, L., Fichtinger, G., Gallia, G. L., & Ishii, M.: Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J. P. W., Viergever, M. A. (eds.) 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 295–302. Springer, Berlin, Heidelberg. (2010)CrossRefGoogle Scholar
  2. Ainley, J., Luntley, M.: The role of attention in expert classroom practice. J. Math. Teacher Educ. 10(1), 3–22 (2007). CrossRefGoogle Scholar
  3. Allen, I.E., Seaman, J.: Online Report Card: Tracking Online Education in the United States. Babson Survey Research Group, Babson (2016)Google Scholar
  4. Baird, B., Smallwood, J., Lutz, A., Schooler, J.W.: The decoupled mind: mind-wandering disrupts cortical phase-locking to perceptual events. J. Cognit. Neurosci. 26(11), 2596–2607 (2014). CrossRefGoogle Scholar
  5. Baltrusaitis, T., Robinson, P., Morency, L.P.: OpenFace: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016, pp. 1–10. (2016)
  6. Barron, E., Riby, L.M., Greer, J., Smallwood, J.: Absorbed in thought: the effect of mind wandering on the processing of relevant and irrelevant events. Psychol. Sci. 22(5), 596–601 (2011). CrossRefGoogle Scholar
  7. Bates, A.T.: Technology, E-Learning and Distance Education. Routledge, Abingdon (2005)CrossRefGoogle Scholar
  8. Berliner, D.C.: What’s all the fuss about instructional time? In: Bromme, R., Ben-Peretz, M. (eds.) The Nature of Time in School. Theoretical Concepts, Practitioners Perceptions, pp. 3–35. Teachers College Press, New York (1990). CrossRefGoogle Scholar
  9. Bixler, R., D’Mello, S.K.: Toward fully automated person-independent detection of mind wandering. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) User Modeling Adaptation and Personalization, pp. 37–48. Springer, Aalborg (2014). CrossRefGoogle Scholar
  10. Bixler, R., D’Mello, S.K.: Automatic gaze-based user-independent detection of mind wandering during computerized reading. User Model. User Adap. Inter. 26(1), 33–68 (2016). CrossRefGoogle Scholar
  11. Blanchard, N., Bixler, R., Joyce, T., D’Mello, S.K.: Automated physiological based detection of mind wandering during learning. In: Trausan-Matu, S., Boyer, K., Crosby, M., Panourgia, K. (eds.) Intelligent Tutoring Systems, vol. 8474, pp. 55–60. Springer, Cham (2014)CrossRefGoogle Scholar
  12. Bosch, N., D’Mello, S. K.: Automatic detection of mind wandering from video in the lab and in the classroom. IEEE Trans. Affect. Comput. (n.d.) (in review)Google Scholar
  13. Bosch, N., D’Mello, S.K., Baker, R.S.J.D., Ocumpaugh, J., Shute, V., Ventura, M., et al.: Automatic detection of learning-centered affective states in the wild. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 379–388. ACM, New York. (2015)
  14. Buswell, G.T.: How people look at pictures. Psychol. Bull. 33(2), 142–143 (1936). CrossRefGoogle Scholar
  15. Buswell, G.T.: How adults read. Suppl. Educ. Monogr. 45, 158 (1937). CrossRefGoogle Scholar
  16. Cade, W.L., Copeland, J.L., Person, N.K., D’Mello, S.K.: Dialogue modes in expert tutoring. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2008).
  17. Campbell, F.W., Wurtz, R.H.: Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis. Res. 18(10), 1297–1303 (1978). CrossRefGoogle Scholar
  18. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002). CrossRefzbMATHGoogle Scholar
  19. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Taylor & Francis, Milton Park (2013)CrossRefGoogle Scholar
  20. Csifcsák, G., Mittner, M.: Linking brain networks and behavioral variability to different types of mind-wandering. Proc. Natl. Acad. Sci. 114(30), E6031–E6032 (2017). CrossRefGoogle Scholar
  21. D’Mello, S.K.: Giving eyesight to the blind: towards attention-aware AIED. Int. J. Artif. Intell. Educ. 26(2), 645–659 (2016). CrossRefGoogle Scholar
  22. D’Mello, S.K.: What do we think about when we learn? In: Mills, K.K., Long, D., Magliano, J., Wierner, K. (eds.) Deep comprehension, pp. 52–67. Routledge, Abingdon (2018)Google Scholar
  23. D’Mello, S.K., Hays, P., Williams, C., Cade, W., Brown, J., Olney, A.: Collaborative lecturing by human and computer tutors. In: Aleven, V., Kay, J., Mostow, J. (eds.) Intelligent Tutoring Systems, pp. 178–187. Springer, Berlin, Heidelberg (2010a). CrossRefGoogle Scholar
  24. D’Mello, S.K., Lehman, B., Person, N.: Monitoring affect states during effortful problem solving activities. Int. J. Artif. Intell. Educ. (2010b). CrossRefGoogle Scholar
  25. D’Mello, S.K., Olney, A., Person, N.: Mining collaborative patterns in tutorial dialogues. JEDM-J. Educ Data Min. (2010c)Google Scholar
  26. Deubel, H., Schneider, W.X.: Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36(12), 1827–1837 (1996). CrossRefGoogle Scholar
  27. Dodge, R.: Visual perception during eye movement. Psychol. Rev. 7(5), 454–465 (1900). CrossRefGoogle Scholar
  28. Drummond, J., Litman, D.: In the zone: towards detecting student zoning out using supervised machine learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) Intelligent Tutoring Systems, pp. 306–308. Springer, Pittsburgh (2010). CrossRefGoogle Scholar
  29. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  30. Ericsson, K.A., Simon, H.A.: Verbal reports as data. Psychol. Rev. 87(3), 215–251 (1980). CrossRefGoogle Scholar
  31. Faber, M., D’Mello, S.K. How the stimulus influences mind wandering in semantically-rich task contexts. Cognit. Res. Principles Implic. (in press)Google Scholar
  32. Faber, M., Bixler, R., D’Mello, S.K.: An automated behavioral measure of mind wandering during computerized reading. Behav. Res. Methods 50(1), 134–150 (2017). CrossRefGoogle Scholar
  33. Feng, S., D’Mello, S.K., Graesser, A.C.: Mind wandering while reading easy and difficult texts. Psychon. Bull. Rev. 20(3), 586–592 (2013). CrossRefGoogle Scholar
  34. Forbes-Riley, K., Litman, D.: When does disengagement correlate with learning in spoken dialog computer tutoring? In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) Artificial Intelligence in Education, pp. 81–89. Springer, Auckland (2011). CrossRefGoogle Scholar
  35. Franklin, M.S., Smallwood, J., Schooler, J.W.: Catching the mind in flight: using behavioral indices to detect mindless reading in real time. Psychon. Bull. Rev. 18(5), 992–997 (2011). CrossRefGoogle Scholar
  36. Franklin, M.S., Broadway, J.M., Mrazek, M.D., Smallwood, J., Schooler, J.W.: Window to the wandering mind: pupillometry of spontaneous thought while reading. Q. J. Exp. Psychol. 66(12), 2289–2294 (2013). CrossRefGoogle Scholar
  37. Gawne, T.J., Martin, J.M.: Activity of primate V1 cortical neurons during blinks. J. Neurophysiol. 84(5), 2691–2694 (2000). CrossRefGoogle Scholar
  38. Giambra, L.M.: A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious Cognit. 4(1), 1–21 (1995). CrossRefGoogle Scholar
  39. Girn, M., Mills, C., Laycock, E., Ellamil, M., Ward, L., Christoff, K.: Neural dynamics of spontaneous thought: an electroencephalographic study. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition. Neurocognition and Machine Learning: 11th International Conference. (2017)Google Scholar
  40. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009). CrossRefGoogle Scholar
  41. Hild, J., Kühnle, C., & Beyerer, J.: Gaze-based moving target acquisition in real-time full motion video. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pp. 241–244. ACM, New York. (2016)
  42. Hoffman, J.E., Subramaniam, B.: The role of visual attention in saccadic eye movements. Percept. Psychophys. 57(6), 787–795 (1995). CrossRefGoogle Scholar
  43. Huey, E.B.: Preliminary experiments in the physiology and psychology of reading. Am. J. Psychol. 9(4), 575 (1898). CrossRefGoogle Scholar
  44. Huey, E.B.: The Psychology and Pedagogy of Reading: With a Review of the History of Reading and Writing and of Methods, Texts, and Hygiene in Reading. The Macmillan company, London (1908)Google Scholar
  45. Hutt, S., Mills, C., White, S., Donnelly, P.J., D’Mello, S.K.: The eyes have it: gaze-based detection of mind wandering during learning with an intelligent tutoring system. In: Barnes, T., Chi, M., Feng, M. (eds.) The 9th International Conference on Educational Data Mining, Raleigh, pp. 86–93, (2016)Google Scholar
  46. Hutt, S., Hardey, J., Bixler, R., Stewart, A., Risko, E., D’Mello, S.K.: Gaze-based detection of mind wandering during lecture viewing. In: Xiangen, H., Tiffany, B., Arnon, H. Paquette, L. (eds.) Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017), pp. 226–231 (2017a)Google Scholar
  47. Hutt, S., Mills, C., Bosch, N., Krasich, K., Brockmole, J., D’Mello, S.K.: “Out of the fr-eye-ing pan”: towards gaze-based models of attention during learning with technology in the classroom. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 94–103. ACM, New York. (2017b)
  48. Javel, É.: Essai sur la physiologie de la lecture. Annales d’Oculistique 80, 61–73 (1878)Google Scholar
  49. Just, M.A., Carpenter, P.: Eye fixations and cognitive processes. Cognit. Psychol. 8(4), 441–480 (1976). CrossRefGoogle Scholar
  50. Kam, J.W.Y., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J.W., Handy, T.C.: Slow fluctuations in attentional control of sensory cortex. J. Cognit. Neurosci. 23(2), 460–470 (2011). CrossRefGoogle Scholar
  51. Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., Torralba, A.: Eye tracking for everyone. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp. 2176–2184. (2016)
  52. Krasich, K., McManus, R., Hutt, S., Faber, M., D’Mello, S.K., Brockmole, J.: Gaze-based signatures of mind wandering during real-world scene processing. J. Exp. Psychol. Gen. 147(8), 1111 (2018). CrossRefGoogle Scholar
  53. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). MathSciNetCrossRefzbMATHGoogle Scholar
  54. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  55. Loboda, T.D.: Study and detection of mindless reading. Retrieved from (2014). Accessed Sept 2018
  56. Matin, E.: Saccadic suppression: a review and an analysis. Psychol. Bull. 81(12), 899–917 (1974). CrossRefGoogle Scholar
  57. Maurer, B., Krischkowsky, A., & Tscheligi, M.: Exploring gaze and hand gestures for non-verbal in-game communication. In: Extended Abstracts Publication of the Annual Symposium on Computer–Human Interaction in Play, pp. 315–322. ACM. (2017)
  58. McVay, J.C., Kane, M.J.: Conducting the train of thought: working memory capacity, goal neglect, and mind wandering in an executive-control task. J. Exp. Psychol. Learn. Mem. Cognit. 35(1), 196–204 (2009). CrossRefGoogle Scholar
  59. McVay, J.C., Kane, M.J.: Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 136(2), 188–197 (2010). CrossRefGoogle Scholar
  60. McVay, J.C., Kane, M.J.: Drifting from slow to “D’oh!”: working memory capacity and mind wandering predict extreme reaction times and executive control errors. J. Exp. Psychol. Learn. Mem. Cognit. 38(3), 525–549 (2012). CrossRefGoogle Scholar
  61. McVay, J.C., Kane, M.J., Kwapil, T.R.: Tracking the train of thought from the laboratory into everyday life: an experience-sampling study of mind wandering across controlled and ecological contexts. Psychon. Bull. Rev. 16(5), 857–863 (2009). CrossRefGoogle Scholar
  62. Messinger, D., Fogel, A., Dickson, K.L.: All smiles are positive, but some smiles are more positive than others. Dev. Psychol. 37(5), 642–653 (2001). CrossRefGoogle Scholar
  63. Mills, C., D’Mello, S.K. Toward a real-time (day) dreamcatcher: sensor-free detection of mind wandering during online reading. In: Santos, O.C., Boticario, J.G., Romero, C., Pechenizkiy, M., Merceron, A., Mitros, P., et al. (eds.) Proceedings of the 8th International Conference on Educational Data Mining, pp. 69–76 (2015a)Google Scholar
  64. Mills, C., D’Mello, S.K., Bosch, N., Olney, A.M.: Mind wandering during learning with an intelligent tutoring system. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, F.M. (eds.) Artificial Intelligence in Education, pp. 267–276. Springer, Madrid (2015b). CrossRefGoogle Scholar
  65. Mills, C., Bixler, R., Wang, X., D’Mello, S.K.: Automatic gaze-based detection of mind wandering during film viewing. In: Barnes, T., Chi, M., Feng, M. (eds.) The 9th International Conference on Educational Data Mining, Raleigh, pp. 30–37 (2016)Google Scholar
  66. Mittner, M., Boekel, W., Tucker, A.M., Turner, B.M., Heathcote, A., Forstmann, B.U.: When the brain takes a break: a model-based analysis of mind wandering. J. Neurosci. 34(49), 16286–16295 (2014). CrossRefGoogle Scholar
  67. Mooneyham, B.W., Schooler, J.W.: The costs and benefits of mind-wandering: a review. Can. J. Exp. Psychol. 67(1), 11–18 (2013). CrossRefGoogle Scholar
  68. Navarro, D., Sundstedt, V.: Simplifying game mechanics: gaze as an implicit interaction method. In: SIGGRAPH Asia 2017 Technical Briefs, p. 4. ACM. (2017)
  69. Olney, A.M., Graesser, A.C., Person, N.K.: Tutorial dialog in natural language. Stud. Comput. Intell. (2010). CrossRefGoogle Scholar
  70. Olney, A.M., D’Mello, S.K., Person, N., Cade, W., Hays, P., Williams, C., et al.: Guru: a computer tutor that models expert human tutors. In: Cerri, S., Clancey, W., Papadourakis, G., Panourgia, K. (eds.) Intelligent Tutoring Systems, pp. 256–261. Springer, Chania (2012). CrossRefGoogle Scholar
  71. Olney, A.M., Risko, E.F., D’Mello, S.K., Graesser, A.C.: Attention in educational contexts: the role of the learning task in guiding attention. In: Fawcett, J., Risko, E.F., Kingstone, A. (eds.) The Handbook of Attention. MIT Press, Cambridge (2015)Google Scholar
  72. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). CrossRefGoogle Scholar
  73. Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., Hays, J.: WebGazer : scalable webcam eye tracking using user interactions. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 3839–3845 (2016)Google Scholar
  74. Person, N.K., Olney, A., D’Mello, S.K., Lehman, B.: Interactive concept maps and learning outcomes in guru. In: Florida Association for Institutional Research Conference, Marco Island, pp. 456–461 (2012)Google Scholar
  75. Pham, P., Wang, J.: AttentiveLearner: improving mobile MOOC learning via implicit heart rate tracking. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) Artificial Intelligence in Education, pp. 367–376. Springer, Madrid (2015). CrossRefGoogle Scholar
  76. Randall, J.G., Oswald, F.L., Beier, M.E.: Mind-wandering, cognition, and performance: a theory-driven meta-analysis of attention regulation. Psychol. Bull. 140(6), 1411–1431 (2014). CrossRefGoogle Scholar
  77. Rasor, T., Olney, A., D’Mello, S.: Student speech act classification using machine learning. In: FLAIRS Conference (2011)Google Scholar
  78. Rayner, K.: Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124(3), 372–422 (1998). CrossRefGoogle Scholar
  79. Reichle, E.D., Reineberg, A.E., Schooler, J.W.: Eye movements during mindless reading. Psychol. Sci. 21(9), 1300–1310 (2010). CrossRefGoogle Scholar
  80. Risko, E.F., Anderson, N., Sarwal, A., Engelhardt, M., Kingstone, A.: Everyday attention: variation in mind wandering and memory in a lecture. Appl. Cognit. Psychol. 26(2), 234–242 (2012). CrossRefGoogle Scholar
  81. Risko, E.F., Buchanan, D., Medimorec, S., Kingstone, A.: Everyday attention: mind wandering and computer use during lectures. Comput. Educ. 68, 275–283 (2013). CrossRefGoogle Scholar
  82. Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., Yiend, J.: “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35(6), 747–758 (1997). CrossRefGoogle Scholar
  83. Schooler, J.W., Reichle, E.D., Halpern, D.V.: Zoning out while reading: evidence for dissociations between experience and metaconsciousness. In: Levin, D.T. (ed.) Thinking and Seeing: Visual Metacognition in Adults and Children, pp. 203–226. MIT Press, Cambridge (2004)Google Scholar
  84. Schooler, J.W., Smallwood, J., Christoff, K., Handy, T.C., Reichle, E.D., Sayette, M.A.: Meta-awareness, perceptual decoupling and the wandering mind. Trends Cognit. Sci. 15(7), 319–326 (2011). CrossRefGoogle Scholar
  85. Seibert, P.S., Ellis, H.C.: Irrelevant thoughts, emotional mood states, and cognitive task performance. Mem. Cognit. 19(5), 507–513 (1991). CrossRefGoogle Scholar
  86. Seli, P., Risko, E.F., Smilek, D.: On the necessity of distinguishing between unintentional and intentional mind wandering. Psychol. Sci. 27(5), 685–691 (2016). CrossRefGoogle Scholar
  87. Sewell, W., Komogortsev, O.: Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network. In: Proceedings of the 28th of the International Conference Extended Abstracts on Human Factors in Computing Systems—CHI EA’10, p. 3739. (2010)
  88. Shernoff, D.J., Csikszentmihalyi, M., Schneider, B., Shernoff, E.S.: Student engagement in high school classrooms from the perspective of flow theory. Sch. Psychol. Q. 18(2), 158–176 (2003). CrossRefGoogle Scholar
  89. Smallwood, J., Schooler, J.W.: The restless mind. Psychol. Bull. 132(6), 946–958 (2006). CrossRefGoogle Scholar
  90. Smallwood, J., Schooler, J.W.: The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015). CrossRefGoogle Scholar
  91. Smallwood, J., Fishman, D.J., Schooler, J.W.: Counting the cost of an absent mind: mind wandering as an underrecognized influence on educational performance. Psychol. Bull. Rev. 14(2), 230–236 (2007). CrossRefGoogle Scholar
  92. Smallwood, J., Beach, E., Schooler, J.W., Handy, T.C.: Going AWOL in the brain: mind wandering reduces cortical analysis of external events. J. Cognit. Neurosci. 20(3), 458–469 (2008a). CrossRefGoogle Scholar
  93. Smallwood, J., McSpadden, M., Schooler, J.W.: When attention matters: the curious incident of the wandering mind. Mem. Cognit. 36(6), 1144–1150 (2008b). CrossRefGoogle Scholar
  94. Smilek, D., Carriere, J.S.A., Cheyne, J.A.: Out of mind, out of sight: eye blinking as indicator and embodiment of mind wandering. Psychol. Sci. (2010). CrossRefGoogle Scholar
  95. Sottilare, R.A., Graesser, A., Hu, X., Holden, H.: Design Recommendations for Intelligent Tutoring Systems—Volume 1: Learner Modeling, vol. 1. US Army Research Laboratory, Adelphi (2013)Google Scholar
  96. Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., D’Argembeau, A.: Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Physiol. (Oxf) 136(3), 370–381 (2011). CrossRefGoogle Scholar
  97. Stewart, A., Bosch, N., Chen, H., Donnelly, P., D’Mello, S.K.: Face forward: detecting mind wandering from video during narrative film comprehension. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) Artificial Intelligence in Education, pp. 359–370. Springer, Berlin (2017a). CrossRefGoogle Scholar
  98. Stewart, A., Bosch, N., D’Mello, S.K.: Generalizability of face-based mind wandering detection across task contexts. In: Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017), Wuhan, pp. 88–95 (2017b)Google Scholar
  99. Szpunar, K.K., Khan, N.Y., Schacter, D.L.: Interpolated memory tests reduce mind wandering and improve learning of online lectures. Proc. Natl. Acad. Sci. 110(16), 6313–6317 (2013a). CrossRefGoogle Scholar
  100. Szpunar, K.K., Moulton, S.T., Schacter, D.L.: Mind wandering and education: from the classroom to online learning. Front. Psychol. 4, 495 (2013b). CrossRefGoogle Scholar
  101. Twigg, C.A.: Models for online learning. Educause Rev. 38, 28–38 (2003)Google Scholar
  102. Uzzaman, S., Joordens, S.: The eyes know what you are thinking: eye movements as an objective measure of mind wandering. Conscious Cognit. 20(4), 1882–1886 (2011). CrossRefGoogle Scholar
  103. Vosskuhler, A., Nordmeier, V., Kuchinke, L., Jacobs, A.M.: OGAMA (Open Gaze and Mouse Analyzer): open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav. Res. Methods 40(4), 1150–1162 (2008). CrossRefGoogle Scholar
  104. Weibel, N., Fouse, A., Emmenegger, C., Kimmich, S., Hutchins, E.: Let’s look at the cockpit: exploring mobile eye-tracking for observational research on the flight deck. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 107–114. ACM. (2012)
  105. Yarbus, A.L.: Eye Movements and Vision. Plenum Publishing Corp, New York (1967)CrossRefGoogle Scholar
  106. Yonetani, R., Kawashima, H., Matsuyama, T.: Multi-mode saliency dynamics model for analyzing gaze and attention. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 115–122. ACM, New York. (2012)
  107. Zhang, Y., Chong, M.K., Müller, J., Bulling, A., Gellersen, H.: Eye tracking for public displays in the wild. Pers. Ubiquit. Comput. 19(5), 967–981 (2015). CrossRefGoogle Scholar
  108. Zoogman, S., Goldberg, S.B., Hoyt, W.T., Miller, L.: Mindfulness interventions with youth: a meta-analysis. Mindfulness 6(2), 290–302 (2015). CrossRefGoogle Scholar
  109. Zuber, B.L., Stark, L.: Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16(1), 65–79 (1966). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Colorado, BoulderBoulderUSA
  2. 2.University of Notre DameNotre DameUSA
  3. 3.University of New HampshireDurhamUSA
  4. 4.University of Illinois at Urbana-ChampaignChampaignUSA
  5. 5.Indiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations