Advertisement

Automated gaze-based mind wandering detection during computerized learning in classrooms

  • Stephen HuttEmail author
  • Kristina Krasich
  • Caitlin Mills
  • Nigel Bosch
  • Shelby White
  • James R. Brockmole
  • Sidney K. D’Mello
Article
  • 33 Downloads

Abstract

We investigate the use of commercial off-the-shelf (COTS) eye-trackers to automatically detect mind wandering—a phenomenon involving a shift in attention from task-related to task-unrelated thoughts—during computerized learning. Study 1 (N = 135 high-school students) tested the feasibility of COTS eye tracking while students learn biology with an intelligent tutoring system called GuruTutor in their classroom. We could successfully track eye gaze in 75% (both eyes tracked) and 95% (one eye tracked) of the cases for 85% of the sessions where gaze was successfully recorded. In Study 2, we used this data to build automated student-independent detectors of mind wandering, obtaining accuracies (mind wandering F1 = 0.59) substantially better than chance (F1 = 0.24). Study 3 investigated context-generalizability of mind wandering detectors, finding that models trained on data collected in a controlled laboratory more successfully generalized to the classroom than the reverse. Study 4 investigated gaze- and video- based mind wandering detection, finding that gaze-based detection was superior and multimodal detection yielded an improvement in limited circumstances. We tested live mind wandering detection on a new sample of 39 students in Study 5 and found that detection accuracy (mind wandering F1 = 0.40) was considerably above chance (F1 = 0.24), albeit lower than offline detection accuracy from Study 1 (F1 = 0.59), a finding attributable to handling of missing data. We discuss our next steps towards developing gaze-based attention-aware learning technologies to increase engagement and learning by combating mind wandering in classroom contexts.

Keywords

Eye-gaze Cyberlearning Intelligent tutoring systems Mind wandering Attention-aware learning 

Notes

Acknowledgements

This research was supported by the National Science Foundation (NSF) (DRL 1235958 and IIS 1523091). Any opinions, findings and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF. Thanks to fellow lab members for their assistance in the data collection, to the students for their valuable feedback and to our teacher consultant (not named to protect student privacy) for welcoming us into their classroom.

References

  1. Ahmidi, N., Hager, G. D., Ishii, L., Fichtinger, G., Gallia, G. L., & Ishii, M.: Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J. P. W., Viergever, M. A. (eds.) 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 295–302. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-15711-0_37 (2010)
  2. Ainley, J., Luntley, M.: The role of attention in expert classroom practice. J. Math. Teacher Educ. 10(1), 3–22 (2007).  https://doi.org/10.1007/s10857-007-9026-z Google Scholar
  3. Allen, I.E., Seaman, J.: Online Report Card: Tracking Online Education in the United States. Babson Survey Research Group, Babson (2016)Google Scholar
  4. Baird, B., Smallwood, J., Lutz, A., Schooler, J.W.: The decoupled mind: mind-wandering disrupts cortical phase-locking to perceptual events. J. Cognit. Neurosci. 26(11), 2596–2607 (2014).  https://doi.org/10.1162/jocn_a_00656 Google Scholar
  5. Baltrusaitis, T., Robinson, P., Morency, L.P.: OpenFace: an open source facial behavior analysis toolkit. In: 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016, pp. 1–10.  https://doi.org/10.1109/WACV.2016.7477553 (2016)
  6. Barron, E., Riby, L.M., Greer, J., Smallwood, J.: Absorbed in thought: the effect of mind wandering on the processing of relevant and irrelevant events. Psychol. Sci. 22(5), 596–601 (2011).  https://doi.org/10.1177/0956797611404083 Google Scholar
  7. Bates, A.T.: Technology, E-Learning and Distance Education. Routledge, Abingdon (2005)Google Scholar
  8. Berliner, D.C.: What’s all the fuss about instructional time? In: Bromme, R., Ben-Peretz, M. (eds.) The Nature of Time in School. Theoretical Concepts, Practitioners Perceptions, pp. 3–35. Teachers College Press, New York (1990).  https://doi.org/10.1108/EUM0000000002517 Google Scholar
  9. Bixler, R., D’Mello, S.K.: Toward fully automated person-independent detection of mind wandering. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) User Modeling Adaptation and Personalization, pp. 37–48. Springer, Aalborg (2014).  https://doi.org/10.1007/978-3-319-08786-3_4 Google Scholar
  10. Bixler, R., D’Mello, S.K.: Automatic gaze-based user-independent detection of mind wandering during computerized reading. User Model. User Adap. Inter. 26(1), 33–68 (2016).  https://doi.org/10.1007/s11257-015-9167-1 Google Scholar
  11. Blanchard, N., Bixler, R., Joyce, T., D’Mello, S.K.: Automated physiological based detection of mind wandering during learning. In: Trausan-Matu, S., Boyer, K., Crosby, M., Panourgia, K. (eds.) Intelligent Tutoring Systems, vol. 8474, pp. 55–60. Springer, Cham (2014)Google Scholar
  12. Bosch, N., D’Mello, S. K.: Automatic detection of mind wandering from video in the lab and in the classroom. IEEE Trans. Affect. Comput. (n.d.) (in review)Google Scholar
  13. Bosch, N., D’Mello, S.K., Baker, R.S.J.D., Ocumpaugh, J., Shute, V., Ventura, M., et al.: Automatic detection of learning-centered affective states in the wild. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 379–388. ACM, New York.  https://doi.org/10.1145/2678025.2701397 (2015)
  14. Buswell, G.T.: How people look at pictures. Psychol. Bull. 33(2), 142–143 (1936).  https://doi.org/10.1037/h0053409 Google Scholar
  15. Buswell, G.T.: How adults read. Suppl. Educ. Monogr. 45, 158 (1937).  https://doi.org/10.1086/614288 Google Scholar
  16. Cade, W.L., Copeland, J.L., Person, N.K., D’Mello, S.K.: Dialogue modes in expert tutoring. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2008).  https://doi.org/10.1007/978-3-540-69132-7-50
  17. Campbell, F.W., Wurtz, R.H.: Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis. Res. 18(10), 1297–1303 (1978).  https://doi.org/10.1016/0042-6989(78)90219-5 Google Scholar
  18. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002).  https://doi.org/10.1613/jair.953 zbMATHGoogle Scholar
  19. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Taylor & Francis, Milton Park (2013)zbMATHGoogle Scholar
  20. Csifcsák, G., Mittner, M.: Linking brain networks and behavioral variability to different types of mind-wandering. Proc. Natl. Acad. Sci. 114(30), E6031–E6032 (2017).  https://doi.org/10.1073/pnas.1705108114 Google Scholar
  21. D’Mello, S.K.: Giving eyesight to the blind: towards attention-aware AIED. Int. J. Artif. Intell. Educ. 26(2), 645–659 (2016).  https://doi.org/10.1007/s40593-016-0104-1 Google Scholar
  22. D’Mello, S.K.: What do we think about when we learn? In: Mills, K.K., Long, D., Magliano, J., Wierner, K. (eds.) Deep comprehension, pp. 52–67. Routledge, Abingdon (2018)Google Scholar
  23. D’Mello, S.K., Hays, P., Williams, C., Cade, W., Brown, J., Olney, A.: Collaborative lecturing by human and computer tutors. In: Aleven, V., Kay, J., Mostow, J. (eds.) Intelligent Tutoring Systems, pp. 178–187. Springer, Berlin, Heidelberg (2010a).  https://doi.org/10.1007/978-3-642-13437-1_18 Google Scholar
  24. D’Mello, S.K., Lehman, B., Person, N.: Monitoring affect states during effortful problem solving activities. Int. J. Artif. Intell. Educ. (2010b).  https://doi.org/10.3233/JAI-2010-012 Google Scholar
  25. D’Mello, S.K., Olney, A., Person, N.: Mining collaborative patterns in tutorial dialogues. JEDM-J. Educ Data Min. (2010c)Google Scholar
  26. Deubel, H., Schneider, W.X.: Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36(12), 1827–1837 (1996).  https://doi.org/10.1016/0042-6989(95)00294-4 Google Scholar
  27. Dodge, R.: Visual perception during eye movement. Psychol. Rev. 7(5), 454–465 (1900).  https://doi.org/10.1037/h0067215 Google Scholar
  28. Drummond, J., Litman, D.: In the zone: towards detecting student zoning out using supervised machine learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) Intelligent Tutoring Systems, pp. 306–308. Springer, Pittsburgh (2010).  https://doi.org/10.1007/978-3-642-13437-1_53 Google Scholar
  29. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  30. Ericsson, K.A., Simon, H.A.: Verbal reports as data. Psychol. Rev. 87(3), 215–251 (1980).  https://doi.org/10.1037/0033-295X.87.3.215 Google Scholar
  31. Faber, M., D’Mello, S.K. How the stimulus influences mind wandering in semantically-rich task contexts. Cognit. Res. Principles Implic. (in press)Google Scholar
  32. Faber, M., Bixler, R., D’Mello, S.K.: An automated behavioral measure of mind wandering during computerized reading. Behav. Res. Methods 50(1), 134–150 (2017).  https://doi.org/10.3758/s13428-017-0857-y Google Scholar
  33. Feng, S., D’Mello, S.K., Graesser, A.C.: Mind wandering while reading easy and difficult texts. Psychon. Bull. Rev. 20(3), 586–592 (2013).  https://doi.org/10.3758/s13423-012-0367-y Google Scholar
  34. Forbes-Riley, K., Litman, D.: When does disengagement correlate with learning in spoken dialog computer tutoring? In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) Artificial Intelligence in Education, pp. 81–89. Springer, Auckland (2011).  https://doi.org/10.1007/978-3-642-21869-9_13 Google Scholar
  35. Franklin, M.S., Smallwood, J., Schooler, J.W.: Catching the mind in flight: using behavioral indices to detect mindless reading in real time. Psychon. Bull. Rev. 18(5), 992–997 (2011).  https://doi.org/10.3758/s13423-011-0109-6 Google Scholar
  36. Franklin, M.S., Broadway, J.M., Mrazek, M.D., Smallwood, J., Schooler, J.W.: Window to the wandering mind: pupillometry of spontaneous thought while reading. Q. J. Exp. Psychol. 66(12), 2289–2294 (2013).  https://doi.org/10.1080/17470218.2013.858170 Google Scholar
  37. Gawne, T.J., Martin, J.M.: Activity of primate V1 cortical neurons during blinks. J. Neurophysiol. 84(5), 2691–2694 (2000).  https://doi.org/10.1152/jn.2000.84.5.2691 Google Scholar
  38. Giambra, L.M.: A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious Cognit. 4(1), 1–21 (1995).  https://doi.org/10.1006/ccog.1995.1001 Google Scholar
  39. Girn, M., Mills, C., Laycock, E., Ellamil, M., Ward, L., Christoff, K.: Neural dynamics of spontaneous thought: an electroencephalographic study. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition. Neurocognition and Machine Learning: 11th International Conference.  https://doi.org/10.1007/978-3-319-58628-1_3 (2017)
  40. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009).  https://doi.org/10.1145/1656274.1656278 Google Scholar
  41. Hild, J., Kühnle, C., & Beyerer, J.: Gaze-based moving target acquisition in real-time full motion video. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pp. 241–244. ACM, New York.  https://doi.org/10.1145/2857491.2857525 (2016)
  42. Hoffman, J.E., Subramaniam, B.: The role of visual attention in saccadic eye movements. Percept. Psychophys. 57(6), 787–795 (1995).  https://doi.org/10.3758/BF03206794 Google Scholar
  43. Huey, E.B.: Preliminary experiments in the physiology and psychology of reading. Am. J. Psychol. 9(4), 575 (1898).  https://doi.org/10.2307/1412192 Google Scholar
  44. Huey, E.B.: The Psychology and Pedagogy of Reading: With a Review of the History of Reading and Writing and of Methods, Texts, and Hygiene in Reading. The Macmillan company, London (1908)Google Scholar
  45. Hutt, S., Mills, C., White, S., Donnelly, P.J., D’Mello, S.K.: The eyes have it: gaze-based detection of mind wandering during learning with an intelligent tutoring system. In: Barnes, T., Chi, M., Feng, M. (eds.) The 9th International Conference on Educational Data Mining, Raleigh, pp. 86–93, (2016)Google Scholar
  46. Hutt, S., Hardey, J., Bixler, R., Stewart, A., Risko, E., D’Mello, S.K.: Gaze-based detection of mind wandering during lecture viewing. In: Xiangen, H., Tiffany, B., Arnon, H. Paquette, L. (eds.) Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017), pp. 226–231 (2017a)Google Scholar
  47. Hutt, S., Mills, C., Bosch, N., Krasich, K., Brockmole, J., D’Mello, S.K.: “Out of the fr-eye-ing pan”: towards gaze-based models of attention during learning with technology in the classroom. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 94–103. ACM, New York.  https://doi.org/10.1145/3079628.3079669 (2017b)
  48. Javel, É.: Essai sur la physiologie de la lecture. Annales d’Oculistique 80, 61–73 (1878)Google Scholar
  49. Just, M.A., Carpenter, P.: Eye fixations and cognitive processes. Cognit. Psychol. 8(4), 441–480 (1976).  https://doi.org/10.1016/0010-0285(76)90015-3 Google Scholar
  50. Kam, J.W.Y., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J.W., Handy, T.C.: Slow fluctuations in attentional control of sensory cortex. J. Cognit. Neurosci. 23(2), 460–470 (2011).  https://doi.org/10.1162/jocn.2010.21443 Google Scholar
  51. Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., Torralba, A.: Eye tracking for everyone. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp. 2176–2184.  https://doi.org/10.1109/CVPR.2016.239 (2016)
  52. Krasich, K., McManus, R., Hutt, S., Faber, M., D’Mello, S.K., Brockmole, J.: Gaze-based signatures of mind wandering during real-world scene processing. J. Exp. Psychol. Gen. 147(8), 1111 (2018).  https://doi.org/10.1037/xge0000411 Google Scholar
  53. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951).  https://doi.org/10.1214/aoms/1177729694 MathSciNetzbMATHGoogle Scholar
  54. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991).  https://doi.org/10.1109/18.61115 MathSciNetzbMATHGoogle Scholar
  55. Loboda, T.D.: Study and detection of mindless reading. Retrieved from http://d-scholarship.pitt.edu/21734/ (2014). Accessed Sept 2018
  56. Matin, E.: Saccadic suppression: a review and an analysis. Psychol. Bull. 81(12), 899–917 (1974).  https://doi.org/10.1037/h0037368 Google Scholar
  57. Maurer, B., Krischkowsky, A., & Tscheligi, M.: Exploring gaze and hand gestures for non-verbal in-game communication. In: Extended Abstracts Publication of the Annual Symposium on Computer–Human Interaction in Play, pp. 315–322. ACM.  https://doi.org/10.1145/3130859.3131296 (2017)
  58. McVay, J.C., Kane, M.J.: Conducting the train of thought: working memory capacity, goal neglect, and mind wandering in an executive-control task. J. Exp. Psychol. Learn. Mem. Cognit. 35(1), 196–204 (2009).  https://doi.org/10.1037/a0014104 Google Scholar
  59. McVay, J.C., Kane, M.J.: Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 136(2), 188–197 (2010).  https://doi.org/10.1037/a0018298 Google Scholar
  60. McVay, J.C., Kane, M.J.: Drifting from slow to “D’oh!”: working memory capacity and mind wandering predict extreme reaction times and executive control errors. J. Exp. Psychol. Learn. Mem. Cognit. 38(3), 525–549 (2012).  https://doi.org/10.1037/a0025896 Google Scholar
  61. McVay, J.C., Kane, M.J., Kwapil, T.R.: Tracking the train of thought from the laboratory into everyday life: an experience-sampling study of mind wandering across controlled and ecological contexts. Psychon. Bull. Rev. 16(5), 857–863 (2009).  https://doi.org/10.3758/PBR.16.5.857 Google Scholar
  62. Messinger, D., Fogel, A., Dickson, K.L.: All smiles are positive, but some smiles are more positive than others. Dev. Psychol. 37(5), 642–653 (2001).  https://doi.org/10.1037/0012-1649.37.5.642 Google Scholar
  63. Mills, C., D’Mello, S.K. Toward a real-time (day) dreamcatcher: sensor-free detection of mind wandering during online reading. In: Santos, O.C., Boticario, J.G., Romero, C., Pechenizkiy, M., Merceron, A., Mitros, P., et al. (eds.) Proceedings of the 8th International Conference on Educational Data Mining, pp. 69–76 (2015a)Google Scholar
  64. Mills, C., D’Mello, S.K., Bosch, N., Olney, A.M.: Mind wandering during learning with an intelligent tutoring system. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, F.M. (eds.) Artificial Intelligence in Education, pp. 267–276. Springer, Madrid (2015b).  https://doi.org/10.1007/978-3-319-19773-9_27 Google Scholar
  65. Mills, C., Bixler, R., Wang, X., D’Mello, S.K.: Automatic gaze-based detection of mind wandering during film viewing. In: Barnes, T., Chi, M., Feng, M. (eds.) The 9th International Conference on Educational Data Mining, Raleigh, pp. 30–37 (2016)Google Scholar
  66. Mittner, M., Boekel, W., Tucker, A.M., Turner, B.M., Heathcote, A., Forstmann, B.U.: When the brain takes a break: a model-based analysis of mind wandering. J. Neurosci. 34(49), 16286–16295 (2014).  https://doi.org/10.1523/JNEUROSCI.2062-14.2014 Google Scholar
  67. Mooneyham, B.W., Schooler, J.W.: The costs and benefits of mind-wandering: a review. Can. J. Exp. Psychol. 67(1), 11–18 (2013).  https://doi.org/10.1037/a0031569 Google Scholar
  68. Navarro, D., Sundstedt, V.: Simplifying game mechanics: gaze as an implicit interaction method. In: SIGGRAPH Asia 2017 Technical Briefs, p. 4. ACM.  https://doi.org/10.1145/3145749.3149446 (2017)
  69. Olney, A.M., Graesser, A.C., Person, N.K.: Tutorial dialog in natural language. Stud. Comput. Intell. (2010).  https://doi.org/10.1007/978-3-642-14363-2_9 Google Scholar
  70. Olney, A.M., D’Mello, S.K., Person, N., Cade, W., Hays, P., Williams, C., et al.: Guru: a computer tutor that models expert human tutors. In: Cerri, S., Clancey, W., Papadourakis, G., Panourgia, K. (eds.) Intelligent Tutoring Systems, pp. 256–261. Springer, Chania (2012).  https://doi.org/10.1007/978-3-642-30950-2_32 Google Scholar
  71. Olney, A.M., Risko, E.F., D’Mello, S.K., Graesser, A.C.: Attention in educational contexts: the role of the learning task in guiding attention. In: Fawcett, J., Risko, E.F., Kingstone, A. (eds.) The Handbook of Attention. MIT Press, Cambridge (2015)Google Scholar
  72. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010).  https://doi.org/10.1109/TKDE.2009.191 Google Scholar
  73. Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., Hays, J.: WebGazer : scalable webcam eye tracking using user interactions. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 3839–3845 (2016)Google Scholar
  74. Person, N.K., Olney, A., D’Mello, S.K., Lehman, B.: Interactive concept maps and learning outcomes in guru. In: Florida Association for Institutional Research Conference, Marco Island, pp. 456–461 (2012)Google Scholar
  75. Pham, P., Wang, J.: AttentiveLearner: improving mobile MOOC learning via implicit heart rate tracking. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) Artificial Intelligence in Education, pp. 367–376. Springer, Madrid (2015).  https://doi.org/10.1007/978-3-319-19773-9_37 Google Scholar
  76. Randall, J.G., Oswald, F.L., Beier, M.E.: Mind-wandering, cognition, and performance: a theory-driven meta-analysis of attention regulation. Psychol. Bull. 140(6), 1411–1431 (2014).  https://doi.org/10.1037/a0037428 Google Scholar
  77. Rasor, T., Olney, A., D’Mello, S.: Student speech act classification using machine learning. In: FLAIRS Conference (2011)Google Scholar
  78. Rayner, K.: Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124(3), 372–422 (1998).  https://doi.org/10.1037/0033-2909.124.3.372 Google Scholar
  79. Reichle, E.D., Reineberg, A.E., Schooler, J.W.: Eye movements during mindless reading. Psychol. Sci. 21(9), 1300–1310 (2010).  https://doi.org/10.1177/0956797610378686 Google Scholar
  80. Risko, E.F., Anderson, N., Sarwal, A., Engelhardt, M., Kingstone, A.: Everyday attention: variation in mind wandering and memory in a lecture. Appl. Cognit. Psychol. 26(2), 234–242 (2012).  https://doi.org/10.1002/acp.1814 Google Scholar
  81. Risko, E.F., Buchanan, D., Medimorec, S., Kingstone, A.: Everyday attention: mind wandering and computer use during lectures. Comput. Educ. 68, 275–283 (2013).  https://doi.org/10.1016/j.compedu.2013.05.001 Google Scholar
  82. Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., Yiend, J.: “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35(6), 747–758 (1997).  https://doi.org/10.1016/S0028-3932(97)00015-8 Google Scholar
  83. Schooler, J.W., Reichle, E.D., Halpern, D.V.: Zoning out while reading: evidence for dissociations between experience and metaconsciousness. In: Levin, D.T. (ed.) Thinking and Seeing: Visual Metacognition in Adults and Children, pp. 203–226. MIT Press, Cambridge (2004)Google Scholar
  84. Schooler, J.W., Smallwood, J., Christoff, K., Handy, T.C., Reichle, E.D., Sayette, M.A.: Meta-awareness, perceptual decoupling and the wandering mind. Trends Cognit. Sci. 15(7), 319–326 (2011).  https://doi.org/10.1016/j.tics.2011.05.006 Google Scholar
  85. Seibert, P.S., Ellis, H.C.: Irrelevant thoughts, emotional mood states, and cognitive task performance. Mem. Cognit. 19(5), 507–513 (1991).  https://doi.org/10.3758/BF03199574 Google Scholar
  86. Seli, P., Risko, E.F., Smilek, D.: On the necessity of distinguishing between unintentional and intentional mind wandering. Psychol. Sci. 27(5), 685–691 (2016).  https://doi.org/10.1177/0956797616634068 Google Scholar
  87. Sewell, W., Komogortsev, O.: Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network. In: Proceedings of the 28th of the International Conference Extended Abstracts on Human Factors in Computing Systems—CHI EA’10, p. 3739.  https://doi.org/10.1145/1753846.1754048 (2010)
  88. Shernoff, D.J., Csikszentmihalyi, M., Schneider, B., Shernoff, E.S.: Student engagement in high school classrooms from the perspective of flow theory. Sch. Psychol. Q. 18(2), 158–176 (2003).  https://doi.org/10.1521/scpq.18.2.158.21860 Google Scholar
  89. Smallwood, J., Schooler, J.W.: The restless mind. Psychol. Bull. 132(6), 946–958 (2006).  https://doi.org/10.1037/0033-2909.132.6.946 Google Scholar
  90. Smallwood, J., Schooler, J.W.: The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).  https://doi.org/10.1146/annurev-psych-010814-015331 Google Scholar
  91. Smallwood, J., Fishman, D.J., Schooler, J.W.: Counting the cost of an absent mind: mind wandering as an underrecognized influence on educational performance. Psychol. Bull. Rev. 14(2), 230–236 (2007).  https://doi.org/10.3758/BF03194057 Google Scholar
  92. Smallwood, J., Beach, E., Schooler, J.W., Handy, T.C.: Going AWOL in the brain: mind wandering reduces cortical analysis of external events. J. Cognit. Neurosci. 20(3), 458–469 (2008a).  https://doi.org/10.1162/jocn.2008.20037 Google Scholar
  93. Smallwood, J., McSpadden, M., Schooler, J.W.: When attention matters: the curious incident of the wandering mind. Mem. Cognit. 36(6), 1144–1150 (2008b).  https://doi.org/10.3758/MC.36.6.1144 Google Scholar
  94. Smilek, D., Carriere, J.S.A., Cheyne, J.A.: Out of mind, out of sight: eye blinking as indicator and embodiment of mind wandering. Psychol. Sci. (2010).  https://doi.org/10.1177/0956797610368063 Google Scholar
  95. Sottilare, R.A., Graesser, A., Hu, X., Holden, H.: Design Recommendations for Intelligent Tutoring Systems—Volume 1: Learner Modeling, vol. 1. US Army Research Laboratory, Adelphi (2013)Google Scholar
  96. Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., D’Argembeau, A.: Mind-wandering: phenomenology and function as assessed with a novel experience sampling method. Acta Physiol. (Oxf) 136(3), 370–381 (2011).  https://doi.org/10.1016/j.actpsy.2011.01.002 Google Scholar
  97. Stewart, A., Bosch, N., Chen, H., Donnelly, P., D’Mello, S.K.: Face forward: detecting mind wandering from video during narrative film comprehension. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) Artificial Intelligence in Education, pp. 359–370. Springer, Berlin (2017a).  https://doi.org/10.1007/978-3-319-61425-0_30 Google Scholar
  98. Stewart, A., Bosch, N., D’Mello, S.K.: Generalizability of face-based mind wandering detection across task contexts. In: Proceedings of the 10th International Conference on Educational Data Mining (EDM 2017), Wuhan, pp. 88–95 (2017b)Google Scholar
  99. Szpunar, K.K., Khan, N.Y., Schacter, D.L.: Interpolated memory tests reduce mind wandering and improve learning of online lectures. Proc. Natl. Acad. Sci. 110(16), 6313–6317 (2013a).  https://doi.org/10.1073/pnas.1221764110 Google Scholar
  100. Szpunar, K.K., Moulton, S.T., Schacter, D.L.: Mind wandering and education: from the classroom to online learning. Front. Psychol. 4, 495 (2013b).  https://doi.org/10.3389/fpsyg.2013.00495 Google Scholar
  101. Twigg, C.A.: Models for online learning. Educause Rev. 38, 28–38 (2003)Google Scholar
  102. Uzzaman, S., Joordens, S.: The eyes know what you are thinking: eye movements as an objective measure of mind wandering. Conscious Cognit. 20(4), 1882–1886 (2011).  https://doi.org/10.1016/j.concog.2011.09.010 Google Scholar
  103. Vosskuhler, A., Nordmeier, V., Kuchinke, L., Jacobs, A.M.: OGAMA (Open Gaze and Mouse Analyzer): open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav. Res. Methods 40(4), 1150–1162 (2008).  https://doi.org/10.3758/BRM.40.4.1150 Google Scholar
  104. Weibel, N., Fouse, A., Emmenegger, C., Kimmich, S., Hutchins, E.: Let’s look at the cockpit: exploring mobile eye-tracking for observational research on the flight deck. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 107–114. ACM.  https://doi.org/10.1145/2168556.2168573 (2012)
  105. Yarbus, A.L.: Eye Movements and Vision. Plenum Publishing Corp, New York (1967)Google Scholar
  106. Yonetani, R., Kawashima, H., Matsuyama, T.: Multi-mode saliency dynamics model for analyzing gaze and attention. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 115–122. ACM, New York.  https://doi.org/10.1145/2168556.2168574 (2012)
  107. Zhang, Y., Chong, M.K., Müller, J., Bulling, A., Gellersen, H.: Eye tracking for public displays in the wild. Pers. Ubiquit. Comput. 19(5), 967–981 (2015).  https://doi.org/10.1007/s00779-015-0866-8 Google Scholar
  108. Zoogman, S., Goldberg, S.B., Hoyt, W.T., Miller, L.: Mindfulness interventions with youth: a meta-analysis. Mindfulness 6(2), 290–302 (2015).  https://doi.org/10.1007/s12671-013-0260-4 Google Scholar
  109. Zuber, B.L., Stark, L.: Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16(1), 65–79 (1966).  https://doi.org/10.1016/0014-4886(66)90087-2 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Colorado, BoulderBoulderUSA
  2. 2.University of Notre DameNotre DameUSA
  3. 3.University of New HampshireDurhamUSA
  4. 4.University of Illinois at Urbana-ChampaignChampaignUSA
  5. 5.Indiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations