A cognition-centered personalization framework for cultural-heritage content

  • George E. RaptisEmail author
  • Christos Fidas
  • Christina Katsini
  • Nikolaos Avouris


The heterogeneity of the audience of cultural heritage institutions introduces numerous challenges to the delivery of the content. Considering that people differ in the way they perceive, process, and recall information and that their individual cognitive differences influence their experience, performance, and knowledge acquisition when performing cultural-heritage activities, the human-cognition factor should be considered as an important personalization factor within cultural-heritage contexts. To this end, we propose a cognition-centered personalization framework for delivering cultural-heritage activities, tailored to the users’ cognitive characteristics. The framework implements rule-based personalization algorithms that are based on cognition-centered user models that are created implicitly, transparently, and in run-time based on classifiers that correlate end-user cognitive characteristics with interaction and visual behavior patterns. For evaluating the proposed framework and improving the external validity of the experimental results, we conducted two eye-tracking between-subjects user-studies (\(N=226\)) covering two different cognitive styles (field dependence–independence and visualizer–verbalizer) and two different types of cultural activity (visual goal-oriented and visual exploratory). The results provide evidence about the applicability, effectiveness, and efficiency of the proposed framework and underpin the added value of adopting cognition-centered personalization frameworks within digitized cultural-heritage interaction contexts.


Individual cognitive differences Cultural heritage Personalization framework Eye-gaze based user-modeling Evaluation studies 



  1. Alexandridis, G., Chrysanthi, A., Tsekouras, G.E., Caridakis, G.: Personalized and content adaptive cultural heritage path recommendation: an application to the Gournia and Çatalhöyük archaeological sites. User Model. User-Adapt. Interaction (2019).
  2. Alharthi, S.A., Raptis, G.E., Katsini, C., Dolgov, I., Nacke, L.E., Toups, Z.O.: Toward understanding the effects of cognitive styles on collaboration in multiplayer games. In: Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing, ACM, New York, NY, USA, CSCW ’18, pp. 169–172 (2018).
  3. Altanopoulou, P., Tselios, N., Katsanos, C., Georgoutsou, M., Panagiotaki, M.A.: Wiki-mediated activities in higher education: evidence-based analysis of learning effectiveness across three studies. J. Educ. Technol. Soc. 18(4), 511–522 (2015)Google Scholar
  4. Altun, A., Cakan, M.: Undergraduate students’ academic achievement, field dependent/independent cognitive styles and attitude toward computers. Educ. Technol. Soc. 9(1), 289–297 (2006)Google Scholar
  5. Alwi, A., Mckay, E.: Investigating online museum exhibits and personal cognitive learning preferences. Proc. Ascilite Auckl. 2009, 25–34 (2009)Google Scholar
  6. Angeli, C., Valanides, N., Kirschner, P.: Field dependence independence and instructional-design effects on learners’ performance with a computer-modeling tool. Comput. Hum. Behav. 25(6), 1355–1366 (2009). CrossRefGoogle Scholar
  7. Angeli, C., Valanides, N., Polemitou, E., Fraggoulidou, E.: An interaction effect between young children’s field dependence-independence and order of learning with glass-box and black-box simulations: evidence for the malleability of cognitive style in computer-supported learning. Comput. Hum. Behav. 61, 569–583 (2016). CrossRefGoogle Scholar
  8. Antoniou, A., Lepouras, G.: Modeling visitors’ profiles: a study to investigate adaptation aspects for museum learning technologies. ACM J. Comput. Cult. Herit. (JOCCH) 3(2), 1–19 (2010). CrossRefGoogle Scholar
  9. Antoniou, A., Lepouras, G., Bampatzia, S., Almpanoudi, H.: An approach for serious game development for cultural heritage: case study for an archaeological site and museum. ACM J. Comput. Cult. Herit. (JOCCH) 6(4), 17:1–17:19 (2013). CrossRefGoogle Scholar
  10. Antoniou, A., Katifori, A., Roussou, M., Vayanou, M., Karvounis, M., Kyriakidi, M., Pujol-Tost, L.: Capturing the visitor profile for a personalized mobile museum experience: an indirect approach. In: CEUR Workshop Proceedings 1618 (2016)
  11. Ardissono, L., Kuflik, T., Petrelli, D.: Personalization in cultural heritage: the road travelled and the one ahead. User Model. User Adapt. Interact. 22(1), 73–99 (2012). CrossRefGoogle Scholar
  12. Ardito, C., Buono, P., Desolda, G., Matera, M.: From smart objects to smart experiences: an end-user development approach. Int. J. Hum. Comput. Stud. (2017). CrossRefGoogle Scholar
  13. Armstrong, S.J., Cools, E., Sadler-Smith, E.: Role of cognitive styles in business and management: reviewing 40 years of research. Int. J. Manag. Rev. 14(3), 238–262 (2012). CrossRefGoogle Scholar
  14. Bahar, M., Hansell, M.H.: The relationship between some psychological factors and their effect on the performance of grid questions and word association tests. Educ. Psychol. 20(3), 349–364 (2000). CrossRefGoogle Scholar
  15. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquitous Comput. 16(5), 507–526 (2012). CrossRefGoogle Scholar
  16. Barz, M., Daiber, F., Bulling, A.: Prediction of gaze estimation error for error-aware gaze-based interfaces. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (ETRA ’16), pp. 275–278 (2016).
  17. Basile, P., de Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., Semeraro, G.: SpIteR: A module for recommending dynamic personalized museum tours. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Volume 01. IEEE Computer Society, Washington, DC, USA, WI-IAT ’09, pp. 584–587 (2009).,
  18. Belk, M., Fidas, C., Germanakos, P., Samaras, G.: Do human cognitive differences in information processing affect preference and performance of CAPTCHA? Int. J. Hum. Comput. Stud. 84, 1–18 (2015). CrossRefGoogle Scholar
  19. Belk, M., Fidas, C., Katsini, C., Avouris, N., Samaras, G.: Effects of human cognitive differences on interaction and visual behavior in graphical user authentication. In: Bernhaupt, R., Dalvi, G., Joshi, A, K Balkrishan, D., O’Neill, J., Winckler, M. (eds.) Human–Computer Interaction—INTERACT 2017. Springer International Publishing, Cham, pp. 287–296 (2017).
  20. Bixler, R., D’Mello, S.: Automatic gaze-based user-independent detection of mind wandering during computerized reading. User Model. User-Adapt. Interact. 26(1), 33–68 (2016). CrossRefGoogle Scholar
  21. Bohnert, F., Zukerman, I.: Personalised viewing-time prediction in museums. User Model. User-Adapt. Interact. 24(4), 263–314 (2014). CrossRefGoogle Scholar
  22. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: The Adaptive Web. Springer, Berlin, pp. 3–53 (2007).
  23. Cameron, B., Dwyer, F.: The effect of online gaming, cognition and feedback type in facilitating delayed achievement of different learning objectives. J. Interactive Learn. Res. 16(3), 243–258 (2005)Google Scholar
  24. Carmagnola, F., Cena, F., Console, L., Cortassa, O., Gena, C., Goy, A., Torre, I., Toso, A., Vernero, F.: Tag-based user modeling for social multi-device adaptive guides. User Model. User-Adapt. Interact. 18(5), 497–538 (2008). CrossRefGoogle Scholar
  25. Chang, K.E., Chang, C.T., Hou, H.T., Sung, Y.T., Chao, H.L., Lee, C.M.: Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Comput. Educ. 71, 185–197 (2014). CrossRefGoogle Scholar
  26. Chang, B., Chen, S.Y., Jhan, S.N.: The influences of an interactive group-based videogame: cognitive styles vs. prior ability. Comput. Educ. 88, 399–407 (2015). CrossRefGoogle Scholar
  27. Chen, C.F., Chen, F.S.: Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Manag. 31(1), 29–35 (2010). CrossRefGoogle Scholar
  28. Chen, C.M., Huang, S.H.: Web-based reading annotation system with an attention-based self-regulated learning mechanism for promoting reading performance. Br. J. Educ. Technol. 45(5), 959–980 (2014). CrossRefGoogle Scholar
  29. Chen, S.Y., Liu, X.: An integrated approach for modeling learning patterns of students in web-based instruction. ACM Trans. Comput. Hum. Interact. 15(1), 1–28 (2008). CrossRefGoogle Scholar
  30. Chen, X., Starke, S.D., Baber. C., Howes, A.: A cognitive model of how people make decisions through interaction with visual displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM Press, New York, New York, USA, pp. 1205–1216 (2017).
  31. Cheverst, K., Davies, N., Mitchell, K., Smith, P.: Providing tailored (context-aware) information to city visitors. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems. Springer, Berlin, pp. 73–85 (2000).
  32. Clewley, N., Chen, SY., Liu, X.: Cognitive styles and web-based instruction: field dependent/independent vs. holist/serialist. In: 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 2074–2079 (2009).
  33. Clewley, N., Chen, S.Y., Liu, X.: Cognitive styles and search engine preferences. J. Doc. 66(4), 585–603 (2010). CrossRefGoogle Scholar
  34. Codish, D., Ravid, G.: Personality based gamification—educational gamification for extroverts and introverts. In: Conference for the Study of Innovation and Learning Technologies: Learning in the Technological Era (CHAIS ’14), pp. 36–44 (2012).
  35. Coenen, T., Mostmans, L., Naessens, K.: MuseUs: case study of a pervasive cultural heritage serious game. ACM J. Comput. Cult. Herit. (JOCCH) 6(2), 1–19 (2013). CrossRefGoogle Scholar
  36. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: DALICA: agent-based ambient intelligence for cultural-heritage scenarios. IEEE Intell. Syst. 23(2), 34–41 (2008). CrossRefGoogle Scholar
  37. Cramer, H., Evers, V., Ramlal, S., van Someren, M., Rutledge, L., Stash, N., Aroyo, L., Wielinga, B.: The effects of transparency on trust in and acceptance of a content-based art recommender. User Model. User-Adapt. Interact. 18(5), 455–496 (2008). CrossRefGoogle Scholar
  38. Crosby, M.E., Ikehara, C.S.: Using real-time physiological monitoring for assessing cognitive states. In: Digital Multimedia Perception and Design. IGI Global, pp. 170–186 (2006).
  39. Cureton, E.E.: The upper and lower twenty-seven per cent rule. Psychometrika 22(3), 293–296 (1957). zbMATHCrossRefGoogle Scholar
  40. Davis, J.K.: Educational implications of field dependence-independence. Field dependence independence: cognitive style across the life span, pp 149–176Google Scholar
  41. Denisova, A., Nordin, A.I., Cairns, P.: The convergence of player experience questionnaires. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. ACM, New York, NY, USA, CHI PLAY ’16, pp. 33–37 (2016).
  42. Dim, E., Kuflik, T.: Automatic detection of social behavior of museum visitor pairs. ACM Trans. Interact. Intell. Syst. 4(4), 17:1–17:30 (2014). CrossRefGoogle Scholar
  43. Dunnewold, A.L.: Thought field therapy efficacy following large scale traumatic events. Curr. Res. Psychol. 5(1), 34–39 (2014). CrossRefGoogle Scholar
  44. Dwyer, F.M., Moore, D.M.: Effect of color coding on visually and verbally oriented tests with students of different field dependence levels. J. Educ. Technol. Syst. 20(4), 311–320 (1992). CrossRefGoogle Scholar
  45. Elley, W.B.: Vocabulary acquisition from listening to stories. Read. Res. Q. 24(2), 174 (1989). CrossRefGoogle Scholar
  46. Eraslan, S., Yesilada, Y., Harper, S.: Scanpath trend analysis on web pages: clustering eye tracking scanpaths. ACM Trans. Web (TWEB) 10(4), 20:1–20:35 (2016). CrossRefGoogle Scholar
  47. Evans, C., Richardson, J.T.E., Waring, M.: Field independence: reviewing the evidence. Br. J. Educ. Psychol. 83(2), 210–224 (2013). CrossRefGoogle Scholar
  48. Falk, J.H., Dierking, L.D.: The museum experience revisited. Routledge, London (2016)CrossRefGoogle Scholar
  49. Fidas, C.A., Avouris, N.M.: Personalization of mobile applications in cultural heritage environments. In: Proceedings of the 6th International Conference on Information, Intelligence, Systems and Applications (IISA 2015), pp. 1–6 (2015).
  50. Fosh, L., Benford, S., Koleva, B.: Supporting group coherence in a museum visit. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. ACM, New York, NY, USA, CSCW ’16, pp. 1–12 (2016).
  51. Frias-Martinez, E., Chen, S.Y., Liu, X.: Automatic cognitive style identification of digital library users for personalization. J. Am. Soc. Inf. Sci. Technol. 58(2), 237–251 (2007). CrossRefGoogle Scholar
  52. Frias-Martinez, E., Chen, S.Y., Liu, X.: Evaluation of a personalized digital library based on cognitive styles: adaptivity vs. adaptability. Int. J. Inf. Manag. 29(1), 48–56 (2009). CrossRefGoogle Scholar
  53. Froschauer, J., Merkl, D., Arends, M., Goldfarb, D.: Art history concepts at play with ThIATRO. ACM J. Comput. Cult. Herit. (JOCCH) 6(2), 7:1–7:15 (2013). CrossRefGoogle Scholar
  54. Germanakos, P., Belk, M.: A generic human-centred personalization framework: the case of mapU. In: Human-Centred Web Adaptation and Personalization: From Theory to Practice. Springer International Publishing, Cham, pp. 137–182 (2016).
  55. Ghiani, G., Leporini, B., Paternò, F.: Supporting orientation for blind people using museum guides. In: CHI ’08 Extended Abstracts on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI EA ’08, pp. 3417–3422 (2008).
  56. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009). CrossRefGoogle Scholar
  57. Han, S., Yang, S., Kim, J., Gerla, M.: EyeGuardian: A framework of eye tracking and blink detection for mobile device users. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications. ACM, New York, NY, USA, HotMobile ’12, pp. 6:1–6:6 (2012).
  58. Helmert, J.R., Joos, M., Pannasch, S., Velichkovsky, B.M.: Two visual systems and their eye movements: evidence from static and dynamic scene perception. Proc. Cognit. Sci. Soc. 27(27), 2283–2288 (2005).
  59. Hochberg, L., Ovesdotter Alm, C., Rantanen, E.M., Yu, Q., Delong, C.M., Haake, A., Alm, C.O.: Towards automatic annotation of clinical decision-making style. In: Proceedings of LAW VIII—The 8th Linguistic Annotation Workshop, pp. 129–138 (2014)Google Scholar
  60. Hong, J.C., Hwang, M.Y., Tam, K.P., Lai, Y.H., Liu, L.C.: Effects of cognitive style on digital jigsaw puzzle performance: a GridWare analysis. Comput. Hum. Behav. 28(3), 920–928 (2012). CrossRefGoogle Scholar
  61. Hong, M., Jung, J.J., Piccialli, F., Chianese, A.: Social recommendation service for cultural heritage. Pers. Ubiquitous Comput. 21(2), 191–201 (2017). CrossRefGoogle Scholar
  62. Hwang, G.J., Sung, H.Y., Hung, C.M., Huang, I., Tsai, C.C.: Development of a personalized educational computer game based on students’ learning styles. Educ. Technol. Res. Dev. 60(4), 623–638 (2012). CrossRefGoogle Scholar
  63. Janiszewski, C.: The influence of display characteristics on visual exploratory search behavior. J. Consum. Res. 25(3), 290–301 (1998). CrossRefGoogle Scholar
  64. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 66(9), 641–661 (2008). CrossRefGoogle Scholar
  65. Kaptein, M., Parvinen, P.: Advancing E-commerce personalization: process framework and case study. Int. J. Electron. Commer. 19(3), 7–33 (2015). CrossRefGoogle Scholar
  66. Karaman, S., Bagdanov, A.D., D’Amico, G., Landucci, L., Ferracani, A., Pezzatini, D., Del Bimbo, A.: Passive profiling and natural interaction metaphors for personalized multimedia museum experiences. In: Petrosino, A., Maddalena, L., Pala, P. (eds.) New Trends in Image Analysis and Processing—ICIAP 2013. Springer, Berlin, pp. 247–256 (2013).,
  67. Katifori, A., Karvounis, M., Kourtis, V., Kyriakidi, M., Roussou, M., Tsangaris, M., Vayanou, M., Ioannidis, Y., Balet, O., Prados, T., Keil, J., Engelke, T., Pujol, L.: CHESS: personalized storytelling experiences in museums. In: Mitchell, A., Fernández-Vara, C., Thue, D. (eds.) Interactive Storytelling. Springer International Publishing, Cham, pp. 232–235 (2014).,
  68. Katsini, C., Fidas, C., Belk, M., Avouris, N., Samaras, G.: Influences of users’ cognitive strategies on graphical password composition. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI EA ’17, pp. 2698–2705 (2017).
  69. Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G., Avouris, N.: Eye gaze-driven prediction of cognitive differences during graphical password composition. In: 23rd International Conference on Intelligent User Interfaces. ACM, New York, NY, USA, IUI ’18, pp. 147–152 (2018a).
  70. Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G., Avouris, N.: Influences of human cognition and visual behavior on password strength during picture password composition. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI ’18, pp. 87:1–87:14 (2018b).
  71. Katsini, C., Fidas, C., Belk, M., Samaras, G., Avouris, N.: A human cognitive perspective of users’ password choices in recognition-based graphical authentication. Int. J. Hum. Comput. Interact. (2019).
  72. Kempiak, J., Hollywood, L., Bolan, P., McMahon-Beattie, U.: The heritage tourist: an understanding of the visitor experience at heritage attractions. Int. J. Herit. Stud. 23(4), 375–392 (2017). CrossRefGoogle Scholar
  73. Khatib, M., Hosseinpur, R.M.: On the validity of the group embedded figure test (GEFT). J. Lang. Teach. Res. 2(3), 640–648 (2011). CrossRefGoogle Scholar
  74. Kim, K.S.: Implications of user characteristics in information seeking on the world wide web. Int. J. Hum. Comput. Interact. 13(3), 323–340 (2001). CrossRefGoogle Scholar
  75. Koć-Januchta, M., Höffler, T., Thoma, G.B., Prechtl, H., Leutner, D.: Visualizers versus verbalizers: effects of cognitive style on learning with texts and pictures—an eye-tracking study. Comput. Hum. Behav. 68, 170–179 (2017). CrossRefGoogle Scholar
  76. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997). zbMATHCrossRefGoogle Scholar
  77. Kontiza, K., Bikakis, A., Miller, R.: Cognitive-based visualization of semantically structured cultural heritage data. In: Proceedings of the International Workshop on Visualizations and User Interfaces for Ontologies and Linked Data (VOILA 2015), CEUR Workshop Proceedings, vol. 1456, pp. 61–68 (2015).
  78. Kozhevnikov, M.: Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style. Psychol. Bull. 133(3), 464–481 (2007). CrossRefGoogle Scholar
  79. Krejtz, K., Duchowski, A., Szmidt, T., Krejtz, I., González Perilli, F., Pires, A., Vilaro, A., Villalobos, N.: Gaze transition entropy. ACM Trans. Appl. Percept. (TAP) 13(1), 4:1–4:20 (2015). CrossRefGoogle Scholar
  80. Ku, O., Hou, C.C., Chen, S.Y.: Incorporating customization and personalization into game-based learning: a cognitive style perspective. Comput. Hum. Behav. 65, 359–368 (2016). CrossRefGoogle Scholar
  81. Kuflik, T., Wecker, A.J., Lanir, J., Stock, O.: An integrative framework for extending the boundaries of the museum visit experience: linking the pre, during and post visit phases. Inf. Technol. Tour. 15(1), 17–47 (2015). CrossRefGoogle Scholar
  82. Lanir, J., Kuflik, T., Sheidin, J., Yavin, N., Leiderman, K., Segal, M.: Visualizing museum visitors’ behavior: where do they go and what do they do there? Pers. Ubiquitous Comput. 21(2), 313–326 (2017). CrossRefGoogle Scholar
  83. Liew, T.W., Tan, S.M., Seydali, R.: Learners’ field dependence and the effects of personalized narration on learners’ computer perceptions and task-related attitudes in multimedia learning. J. Educ. Technol. Syst. 42(3), 255–272 (2014). CrossRefGoogle Scholar
  84. Light, D.: Progress in dark tourism and thanatourism research: an uneasy relationship with heritage tourism. Tour. Manag. 61, 275–301 (2017). CrossRefGoogle Scholar
  85. Lightner, N.J.: Model testing of users’ comprehension in graphical animation: the effect of speed and focus areas. Int. J. Hum. Comput. Interact. 13(1), 53–73 (2001). CrossRefGoogle Scholar
  86. Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal thresholding of classifiers to maximize F1 measure. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, pp. 225–239 (2014).
  87. Liu, M., Reed, W.M.: The relationship between the learning strategies and learning styles in a hypermedia environment. Comput. Hum. Behav. 10(4), 419–434 (1995). CrossRefGoogle Scholar
  88. Lo, J.J., Wang, Y.J.: Development of an adaptive EC website with online identified cognitive styles of anonymous customers. Int. J. Hum. Comput. Interact. 28(9), 560–575 (2012). CrossRefGoogle Scholar
  89. Loftus, G.R.: Eye fixations and recognition memory for pictures. Cognit. Psychol. 3(4), 525–551 (1972). CrossRefGoogle Scholar
  90. Lohmeyer, Q., Meboldt, M.: How we understand engineering drawings: an eye tracking study investigating skimming and scrutinizing sequences. In: Proceedings of the 20th International Conference on Engineering Design (ICED15), Milan, Italy (2015)Google Scholar
  91. Lu, Ch., Hong, J.C., Huang, Ph.: The effects of individual characteristics on children’s problem solving performances in the context of game-based learning. In: Redesigning Pedagogy: Culture, Knowledge and Understanding. National Institute of Education, Singapore (2007)Google Scholar
  92. Mawad, F., Tras, M., Gimnez, A., Maiche, A., Ares, G.: Influence of cognitive style on information processing and selection of yogurt labels: insights from an eye-tracking study. Food Res. Int. 74, 1–9 (2015). CrossRefGoogle Scholar
  93. Mayer, R.E.: Aids to text comprehension. Educ. Psychol. 19(1), 30–42 (1984). CrossRefGoogle Scholar
  94. Mayer, R.E., Massa, L.J.: Three facets of visual and verbal learners: cognitive ability, cognitive style, and learning preference. J. Educ. Psychol. 95(4), 833–846 (2003). CrossRefGoogle Scholar
  95. Mehigan, T.J., Barry, M., Kehoe, A., Pitt. I.: Using eye tracking technology to identify visual and verbal learners. In: Proceedings of 2011 IEEE International Conference on Multimedia and Expo (2011).
  96. Mokatren, M., Kuflik, T., Shimshoni, I.: Exploring the potential of a mobile eye tracker as an intuitive indoor pointing device: a case study in cultural heritage. In: Future Generation Computer Systems, pp. 528–541 (2017).
  97. MRF: Eye Tracking Market Research Report - Global Forecast 2023. Technical report, Half-Cooked Research Reports (2017)Google Scholar
  98. Naudet, Y., Antoniou, A., Lykourentzou, I., Tobias, E., Rompa, J., Lepouras, G.: Museum personalization based on gaming and cognitive styles. Int. J. Virtual Communities Soc. Netw. 7(2), 1–30 (2015). CrossRefGoogle Scholar
  99. Nelson, L., Held, C., Pirolli, P., Hong, L., Schiano, D., Chi, EH.: With a little help from my friends: examining the impact of social annotations in sensemaking tasks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI ’09, pp. 1795–1798 (2009).
  100. Nisiforou, E., Laghos, A.: Field dependence independence and eye movement patterns: investigating users’ differences through an eye tracking study. Interact. Comput. 28(4), 407–420 (2016). CrossRefGoogle Scholar
  101. Not, E., Petrelli, D.: Blending customisation, context-awareness and adaptivity for personalised tangible interaction in cultural heritage. Int. J. Hum. Comput. Stud. (2018).
  102. Not, E., Petrelli, D.: Empowering cultural heritage professionals with tools for authoring and deploying personalised visitor experiences. User Model. User-Adapt. Interact. (2019).
  103. Oltman, P.K., Raskin, E., Witkin, H.A.: Group Embedded Figures Test. Consulting Psychologists Press, Palo Alto (1971)Google Scholar
  104. Over, E., Hooge, I., Vlaskamp, B., Erkelens, C.: Coarse-to-fine eye movement strategy in visual search. Vis. Res. 47(17), 2272–2280 (2007). CrossRefGoogle Scholar
  105. Packer, J., Ballantyne, R.: Conceptualizing the visitor experience: a review of literature and development of a multifaceted model. Visit. Stud. 19(2), 128–143 (2016). CrossRefGoogle Scholar
  106. Paivio, A.: Mental Representations: A Dual-Coding Approach. Oxford University Press, Oxford (1986)Google Scholar
  107. Papathanassiou-Zuhrt, D.: Cognitive load management of cultural heritage information: an application multi-mix for recreational learners. Procedia Soc. Behav. Sci. 188, 57–73 (2015). CrossRefGoogle Scholar
  108. Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., Hays, J.: WebGazer: scalable webcam eye tracking using user interactions. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 3839–3845 (2016).
  109. Pechenizkiy, M., Calders, T.: A framework for guiding the museum tours personalization. In: International ACM Workshop on Personalized Access to Cultural Heritage (PATCH), pp. 1–12 (2007)Google Scholar
  110. Pedersen, I., Gale, N., Mirza-Babaei, P., Reid, S.: More than meets the eye: the benefits of augmented reality and holographic displays for digital cultural heritage. ACM J. Comput. Cult. Herit. (JOCCH) 10(2), 11:1–11:15 (2017). CrossRefGoogle Scholar
  111. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp. 733–740 (2012).
  112. Perry, S., Roussou, M., Economou, M., Young, H., Pujol, L.: Moving beyond the virtual museum: engaging visitors emotionally. In: Proceedings of the 23rd International Conference on Virtual System Multimedia (VSMM 2017). IEEE, pp. 1–8 (2017).,
  113. Petersen, S.E., Posner, M.I.: The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990). CrossRefGoogle Scholar
  114. Petrelli, D., Not, E.: User-centred design of flexible hypermedia for a mobile guide: reflections on the HyperAudio experience. User Model. User Adapt. Interact. 15(3–4), 303–338 (2005). CrossRefGoogle Scholar
  115. Petrelli, D., Marshall, M.T., O’Brien, S., McEntaggart, P., Gwilt, I.: Tangible data souvenirs as a bridge between a physical museum visit and online digital experience. Pers. Ubiquitous Comput. 21(2), 281–295 (2017). CrossRefGoogle Scholar
  116. Petridis, P., Dunwell, I., Liarokapis, F., Constantinou, G., Arnab, S., de Freitas, S., Hendrix, M.: The herbert virtual museum. J. Electr. Comput. Eng. 2013, 1–8 (2013). CrossRefGoogle Scholar
  117. Plass, J., Chun, D., Mayer, R., Leutner, D.: Supporting visual and verbal learning preferences in a second-language multimedia learning environment. J. Educ. Psychol. 90(1), 25–36 (1998). CrossRefGoogle Scholar
  118. Pollalis, C., Fahnbulleh, W., Tynes, J., Shaer, O.: HoloMuse: enhancing engagement with archaeological artifacts through gesture-based interaction with holograms. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction. ACM, New York, NY, USA, TEI ’17, pp. 565–570 (2017).
  119. Pollatsek, A., Juhasz, B.J., Reichle, E.D., Machacek, D., Rayner, K.: Immediate and delayed effects of word frequency and word length on eye movements in reading: a reversed delayed effect of word length. J. Exp. Psychol. Hum. Percept. Perform. 34(3), 726–750 (2008). CrossRefGoogle Scholar
  120. Pujol, L., Katifori, A., Vayanou, M., Roussou, M., Karvounis, M., Kyriakidi, M., Eleftheratou, S., Ioannidis, Y.: From Personalization to adaptivity: creating immersive visits through interactive digital storytelling at the acropolis museum. In: Workshop Proceedings of the 9th International Conference on Intelligent Environments, pp. 541–554 (2013).,
  121. Rajaonarivo, L., Maisel, E., De Loor, P.: An evolving museum metaphor applied to cultural heritage for personalized content delivery. User Model. User-Adapt. Interact. (2019).
  122. Raptis, G.E., Fidas, C.A., Avouris, N.M.: A Qualitative Analysis of the effect of wholistic-analytic cognitive style dimension on the cultural heritage game playing. In: Proceedings of the 7th International Conference on Information, Intelligence, Systems Applications. IEEE, IISA 2016, pp. 1–6 (2016a).
  123. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Differences of field dependent/independent gamers on cultural heritage playing: preliminary findings of an eye-tracking study. In: Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P. (eds.) Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. Springer International Publishing, Cham, pp. 199–206 (2016b).
  124. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Do Field dependence-independence differences of game players affect performance and behaviour in cultural heritage games? In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. ACM, New York, NY, USA, CHI PLAY ’16, pp. 38–43 (2016c).
  125. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Using eye tracking to identify cognitive differences: a brief literature review. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics. ACM, New York, NY, USA, PCI ’16, pp. 21:1–21:6 (2016d).
  126. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Cultural heritage gaming: effects of human cognitive styles on players’ performance and visual behavior. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. ACM, New York, NY, USA, UMAP ’17, pp. 343–346 (2017a).
  127. Raptis, G.E., Fidas, C.A., Avouris, N.M.: On Implicit elicitation of cognitive strategies using gaze transition entropies in pattern recognition tasks. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI EA ’17, pp. 1993–2000 (2017b).
  128. Raptis, G.E., Katsini, C., Belk, M., Fidas, C., Samaras, G., Avouris, N.: Using Eye gaze data and visual activities to infer human cognitive styles: method and feasibility studies. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, ACM, New York, NY, USA, UMAP ’17, pp. 164–173 (2017c).
  129. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Effects of mixed-reality on players’ behaviour and immersion in a cultural tourism game: a cognitive processing perspective. Int. J. Hum. Comput. Stud. 114, 69–79 (2018a). CrossRefGoogle Scholar
  130. Raptis, G.E., Fidas, C.A., Katsini, C., Avouris, NM.: Towards a cognition-centered personalization framework for cultural-heritage content. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI EA ’18, pp. LBW011:1–LBW011:6 (2018b).
  131. Raptis, G.E., Katsini, C., Fidas, C.A., Avouris, N.M.: Visualization of cultural-heritage content based on individual cognitive differences. In: Proceedings of the AVI-CH 2018 Workshop on Advanced Visual Interfaces for Cultural Heritage (AVI-CH 2018), CEUR Workshop Proceedings, vol. 2091, pp. 74–81 (2018c).
  132. Raptis, G.E., Fidas, C.A., Avouris, N.M.: Do game designers’ decisions related to visual activities affect knowledge acquisition in cultural heritage games?. An evaluation from a human cognitive processing perspective. ACM J. Comput. Cult. Herit. (JOCCH) 12, 4.1–4.25 (2019)Google Scholar
  133. Rayner, K.: Visual attention in reading: eye movements reflect cognitive processes. Mem. Cognit. 5(4), 443–448 (1977). CrossRefGoogle Scholar
  134. Richardson, A.: Verbalizer-visualizer: a cognitive style dimension. J. Ment. Imag. 1(1), 109–125 (1977)Google Scholar
  135. Rittschof, K.A.: Field dependence-independence as visuospatial and executive functioning in working memory: implications for instructional systems design and research. Educ. Technol. Res. Dev. 58(1), 99–114 (2010). CrossRefGoogle Scholar
  136. Rodríguez-Hernández, MdC, Ilarri, S., Hermoso, R., Trillo-Lado, R.: Towards trajectory-based recommendations in museums: evaluation of strategies using mixed synthetic and real data. Procedia Comput. Sci. 113, 234–239 (2017). CrossRefGoogle Scholar
  137. Roes, I., Stash, N., Wang, Y., Aroyo, L.: A Personalized walk through the museum: the CHIP interactive tour guide. In: CHI ’09 Extended Abstracts on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI EA ’09, pp. 3317–3322 (2009).
  138. Rubino, I., Barberis, C., Xhembulla, J., Malnati, G.: Integrating a location-based mobile game in the museum visit: evaluating visitors’ behaviour and learning. ACM J. Comput. Cult. Herit. (JOCCH) 8(3), 15:1–15:18 (2015). CrossRefGoogle Scholar
  139. Sansonetti, G., Gasparetti, F., Micarelli, A., Cena, F., Gena, C.: Enhancing cultural recommendations through social and linked open data. User Model. User-Adapt. Interact. (2019).
  140. Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.M., Wittmann, W.W.: Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J. Exp. Psychol. Gen. 136(3), 414–429 (2007). CrossRefGoogle Scholar
  141. Solé Puig, M., Puigcerver, L., Aznar-Casanova, J.A., Supèr, H.: Difference in visual processing assessed by eye vergence movements. PLoS ONE 8(9), e72041 (2013). CrossRefGoogle Scholar
  142. Sosnovsky, S., Brusilovsky, P.: Evaluation of topic-based adaptation and student modeling in QuizGuide. User Model. User Adapt. Interact. 25(4), 371–424 (2015). CrossRefGoogle Scholar
  143. Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces. ACM, New York, NY, USA, IUI ’13, pp. 317–328 (2013).
  144. Steichen, B., Wu, M.M.A., Toker, D., Conati, C., Carenini, G.: Te, Te, Hi, Hi: Eye gaze sequence analysis for informing user-adaptive information visualizations. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.J. (eds.) User Modeling, Adaptation, and Personalization, pp. 183–194. Springer International Publishing, Cham (2014)CrossRefGoogle Scholar
  145. Sumi, Y., Mase, K.: Supporting awareness of shared interests and experiences in community. ACM SIGGROUP Bull. 21(3), 35–42 (2000). CrossRefGoogle Scholar
  146. Sylaiou, S., Liarokapis, F., Kotsakis, K., Patias, P.: Virtual museums: a survey and some issues for consideration. J. Cult. Herit. 10(4), 520–528 (2009). CrossRefGoogle Scholar
  147. Tanenbaum, J., Tomizu, A.: Narrative meaning creation in interactive storytelling. Int. J. Comput. Sci. 2(1), 3–20 (2008)Google Scholar
  148. Tanenbaum, K., Hatala, M., Tanenbaum, J., Wakkary, R., Antle, A.: A case study of intended versus actual experience of adaptivity in a tangible storytelling system. User Model. User Adapt. Interact. 24(3), 175–217 (2014). CrossRefGoogle Scholar
  149. Templeton, G.F.: A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst. 28(1), 41–58 (2011)Google Scholar
  150. Toker, D., Conati, C., Steichen, B., Carenini, G.: Individual user characteristics and information visualization: connecting the dots through eye tracking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, CHI ’13, pp. 295–304 (2013).
  151. Toker, D., Lallé, S., Conati, C.: Pupillometry and head distance to the screen to predict skill acquisition during information visualization tasks. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces. ACM, New York, NY, USA, IUI ’17, pp. 221–231 (2017).
  152. Tolmie, P., Benford, S., Greenhalgh, C., Rodden, T., Reeves, S.: Supporting group interactions in museum visiting. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing. ACM, New York, NY, USA, CSCW ’14, pp. 1049–1059 (2014).
  153. Tseng, J.C., Chu, H.C., Hwang, G.J., Tsai, C.C.: Development of an adaptive learning system with two sources of personalization information. Comput. Educ. 51(2), 776–786 (2008). CrossRefGoogle Scholar
  154. Tsianos, N., Germanakos, P., Lekkas, Z., Mourlas, C., Samaras, G.: Eye-tracking users’ behavior in relation to cognitive style within an E-learning environment. In: Proceedings of the Ninth IEEE International Conference on Advanced Learning Technologies. IEEE, ICALT vol. 2009, pp. 329–333 (2009).
  155. Vanderheyden, K., De Baets, S.: Does cognitive style diversity affect performance in dyadic student teams? Learn. Individ. Differ. 38, 143–150 (2015). CrossRefGoogle Scholar
  156. Vassilakis, C., Poulopoulos, V., Antoniou, A., Wallace, M., Lepouras, G., Nores, M.L.: exhiSTORY: Smart exhibits that tell their own stories. Future Gen. Comput. Syst. 81, 542–556 (2018). CrossRefGoogle Scholar
  157. Wang, Y., Aroyo, L.M., Stash, N., Rutledge, L.: Interactive user modeling for personalized access to museum collections: the Rijksmuseum case study. In: Conati, C., McCoy, K., Paliouras, G. (eds.) User Modeling 2007. Springer, Berlin, pp. 385–389 (2007).
  158. Wang, Y., Mahmud, J., Liu, T.: Understanding cognitive styles from user-generated social media content. In: Proceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016). AAAI, Cologne, Germany (2016)Google Scholar
  159. Wedel, M., Pieters, R.: Eye fixations on advertisements and memory for brands: a model and findings. Mark. Sci. 19(4), 297–312 (2000). CrossRefGoogle Scholar
  160. Wilde, M., Urhahne, D.: Museum learning: a study of motivation and learning achievement. J. Biol. Educ. 42(2), 78–83 (2008). CrossRefGoogle Scholar
  161. Windhager, F., Federico, P., Mayr, E., Schreder, G., Smuc, M.: A review of information visualization approaches and interfaces to digital cultural heritage collections. In: Proceedings of the 9th Forum Media Technology 2016 and 2nd All Around Audio Symposium 2016 (FMT 2016), CEUR Workshop Proceedings, vol. 1734, pp. 74–81 (2016).
  162. Witkin, H.A., Moore, C.A., Goodenough, D.R., Cox, P.W.: Field-dependent and field-independent cognitive styles and their educational implications. ETS Res. Bull. Ser. 2, 1–64 (1975). CrossRefGoogle Scholar
  163. Wojciechowski, R., Walczak, K., White, M., Cellary, W.: Building virtual and augmented reality museum exhibitions. In: Proceedings of the Ninth International Conference on 3D Web Technology. ACM, New York, NY, USA, Web3D ’04, pp. 135–144 (2004).
  164. Yelizarov, A,, Gamayunov, D.: Adaptive visualization interface that manages user’s cognitive load based on interaction characteristics. In: Proceedings of the 7th International Symposium on Visual Information Communication and Interaction. ACM, New York, NY, USA, VINCI ’14, pp. 1:1–1:8 (2014).

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Human-Computer Interaction (HCI) Group, Laboratory of Interactive Systems, Department of Electrical and Computer EngineeringUniversity of PatrasPatrasGreece
  2. 2.Department of Cultural Heritage Management and New TechnologiesUniversity of PatrasPatrasGreece

Personalised recommendations