Advertisement

Enhancing cultural recommendations through social and linked open data

  • Giuseppe SansonettiEmail author
  • Fabio Gasparetti
  • Alessandro Micarelli
  • Federica Cena
  • Cristina Gena
Article

Abstract

In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.

Keywords

Cultural heritage Recommender systems Social network Linked open data 

Notes

References

  1. Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: A multimedia semantic recommender system for cultural heritage applications. In: Proceedings of the 2011 IEEE Fifth International Conference on Semantic Computing, pp. 403–410. IEEE Computer Society, Washington, DC, ICSC ’11 (2011)Google Scholar
  2. Antoniou, G., Groth, P., Harmelen, F.V.V., Hoekstra, R.: A Semantic Web Primer. The MIT Press, London (2012)Google Scholar
  3. Ardissono, L., Kuflik, T., Petrelli, D.: Personalization in cultural heritage: the road travelled and the one ahead. User Model User Adapt. Interact. 22(1–2), 73–99 (2012)CrossRefGoogle Scholar
  4. Arru, G., Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Signal-based user recommendation on Twitter. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 941–944. ACM, New York, WWW ’13 Companion (2013)  https://doi.org/10.1145/2487788.2488088
  5. Baraglia, R., Muntean, C.I., Nardini, F.M., Silvestri, F.: Learnext: learning to predict tourists movements. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 751–756. ACM, New York, CIKM ’13 (2013)  https://doi.org/10.1145/2505515.2505656
  6. Bartolini, I., Moscato, V., Pensa, R.G., Penta, A., Picariello, A., Sansone, C., Sapino, M.L.: Recommending multimedia objects in cultural heritage applications. In: Petrosino, A., Maddalena, L., Pala, P. (eds) Proceedings of ICIAP 2013 International Workshops on New Trends in Image Analysis and Processing—ICIAP 2013, Naples, September 9–13, pp. 257–267. Springer, Berlin (2013)Google Scholar
  7. Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing traditional local search recommendations with context-awareness. In: Proceedings of the 19th International Conference on User Modeling, Adaption, and Personalization, pp. 335–340. Springer, Berlin, UMAP’11 (2011a)Google Scholar
  8. Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation, pp. 5–10. ACM, New York, CAMRa ’11 (2011b).  https://doi.org/10.1145/2096112.2096114
  9. Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: An approach to social recommendation for context-aware mobile services. ACM Trans. Intell. Syst. Technol. 4(1), 10:1–10:31 (2013).  https://doi.org/10.1145/2414425.2414435 CrossRefGoogle Scholar
  10. Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  11. Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in e-commerce. In: CEUR Workshop Proceedings, CEUR-WS.org, Aachen, CEUR Workshop Proceedings, vol. 997 (2013)Google Scholar
  12. Brilhante, I., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Where shall we go today?: Planning touristic tours with tripbuilder. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, pp. 757–762. ACM, New York, CIKM ’13 (2013).  https://doi.org/10.1145/2505515.2505643
  13. Brusilovsky, P., Karagiannidis, P., Sampson, D.: The benefits of layered evaluation of adaptive applications and services. In: Weibelzahl, S.D.N.C. (ed) Proceedings of Workshop at the 8th International Conference on User Modeling Empirical Evaluation of Adaptive Systems, UM2001, pp. 1–8 (2001)Google Scholar
  14. Carmagnola, F., Cena, F., Gena, C.: User modeling in the social web. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 745–752. Springer, Berlin (2007)Google Scholar
  15. Chang, K.P., Wei, L.Y., Yeh, M.Y., Peng, W.C.: Discovering personalized routes from trajectories. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 33–40. ACM, New York, LBSN ’11 (2011).  https://doi.org/10.1145/2063212.2063218
  16. Cheng, A.J., Chen, Y.Y., Huang, Y.T., Hsu, W.H., Liao, H.Y.M.: Personalized travel recommendation by mining people attributes from community-contributed photos. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 83–92. ACM, New York, MM ’11 (2011).  https://doi.org/10.1145/2072298.2072311
  17. Comai, S., Bernardi, E.D., Matteucci, M., Salice, F.: Maps for easy paths (MEP): enriching maps with accessible paths using MEP traces. In: Gaggi, O., Manzoni, P., Palazzi, C., Bujari, A., Marquez-Barja, J.M. (eds.) Smart Objects and Technologies for Social Good, pp. 254–263. Springer, Cham (2017)CrossRefGoogle Scholar
  18. De Angelis, A., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social cultural recommender based on linked open data. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 329–332. ACM, New York, UMAP ’17 (2017).  https://doi.org/10.1145/3099023.3099092
  19. Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001).  https://doi.org/10.1007/s007790170019 CrossRefGoogle Scholar
  20. Di Bitonto, P., Di Tria, F., Laterza, M., Roselli, T., Rossano, V., Tangorra, F.: Automated generation of itineraries in recommender systems for tourism. In: Proceedings of the 10th International Conference on Current Trends in Web Engineering, pp. 498–508. Springer, Berlin, ICWE’10 (2010)Google Scholar
  21. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959).  https://doi.org/10.1007/BF01386390 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: iSCUR: interest and sentiment-based community detection for user recommendation on Twitter. In: Proceedings of User Modeling, Adaptation, and Personalization: 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7–11, pp. 314–319. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08786-3_27
  23. Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Future Gener. Comput. Syst. 78(P1), 430–439 (2018).  https://doi.org/10.1016/j.future.2017.03.020 CrossRefGoogle Scholar
  24. Fisher, R.: Statistical Methods for Research Workers. Edinburgh Oliver & Boyd, Edinburgh (1925)zbMATHGoogle Scholar
  25. Hagen, K., Kramer, R., Hermkes, M., Schumann, B., Mueller, P.: chap Semantic Matching and Heuristic Search for a Dynamic Tour Guide. In: Proceedings of the International Conference in Innsbruck, pp. 149–159. Springer, Vienna (2005).  https://doi.org/10.1007/3-211-27283-6_14
  26. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic similarity from natural language and ontology analysis. Synth. Lect. Hum. Lang. Technol. 8(1), 1–254 (2015)CrossRefGoogle Scholar
  27. Hsieh, H.P., Li, C.T., Lin, S.D.: Measuring and recommending time-sensitive routes from location-based data. ACM Trans. Intell. Syst. Technol. 5(3), 45 (2014).  https://doi.org/10.1145/2542668 CrossRefGoogle Scholar
  28. Jameson, A.: Adaptive interfaces and agents. In: Jacko, J.A., Sears, A. (eds.) Human–Computer Interaction Handbook, 2nd edn, pp. 305–330. Erlbaum, Mahwah (2006)Google Scholar
  29. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  30. Karagiannidis, C., Sampson, D.G.: Layered evaluation of adaptive applications and services. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH00, pp. 343–346. Springer, London (2000)Google Scholar
  31. Kim, J., Cha, M., Sandholm, T.: Socroutes: safe routes based on tweet sentiments. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 179–182. ACM, New York, WWW’14 Companion (2014).  https://doi.org/10.1145/2567948.2577023
  32. Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation using geotags in photo sharing sites. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 579–588. ACM, New York, CIKM ’10 (2010).  https://doi.org/10.1145/1871437.1871513
  33. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommendation based on user interests and points of interest visit durations. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 1778–1784. AAAI Press, IJCAI’15 (2015)Google Scholar
  34. Lo Bue, A., Wecker, A.J., Kuflik, T., Machì, A., Stock, O.: Providing personalized cultural heritage information for the smart region—a proposed methodology. In: Cristea, A.I., Masthoff, J., Said, A., Tintarev, N. (eds.) Posters, Demos, Late-breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP 2015), Dublin, Ireland, June 29–July 3, CEUR-WS.org, CEUR Workshop Proceedings, vol. 1388, pp. 1–7 (2015)Google Scholar
  35. Ludwig, B., Zenker, B., Schrader, J.: Recommendation of personalized routes with public transport connections. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) Intelligent Interactive Assistance and Mobile Multimedia Computing, pp. 97–107. Springer, Berlin (2009)Google Scholar
  36. McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: Sanderson, M., Jrvelin, K., Allan, J., Bruza, P. (eds) SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Sheffield, July 25–29, 2004, pp. 329–336. ACM (2004)Google Scholar
  37. Meymandpour, R., Davis, J.G.: A semantic similarity measure for linked data: an information content-based approach. Knowl. Based Syst. 109, 276–293 (2016)CrossRefGoogle Scholar
  38. Moreno, A., Valls, A., Isern, D., Marin, L., Borrís, J.: Sigtur/e-destination: ontology-based personalized recommendation of tourism and leisure activities. Eng. Appl. Artif. Intell. 26(1), 633–651 (2013)CrossRefGoogle Scholar
  39. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Press, Harlow (1999)Google Scholar
  40. Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: Proceedings of the 4th Workshop on Emotions and Personality in Personalized Systems Co-located with ACM Conference on Recommender Systems (RecSys 2016), pp. 55–59. Boston (2016)Google Scholar
  41. Paramythis, A., Totter, P., Stephanidis, P.: A modular approach to the evaluation of adaptive user interface. In: Weibelzahl, S., Chin, D., Weber, G. (eds.) Proceedings of the First Workshop on Empirical Evaluation of Adaptive Systems, pp. 9–24. Sonthofen (2001)Google Scholar
  42. Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: Linked Data Meets Artificial Intelligence, Papers from the 2010 AAAI Spring Symposium, Technical Report SS-10-07, Stanford (2010)Google Scholar
  43. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 157–164. ACM, New York, RecSys’11 (2011a)Google Scholar
  44. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 157–164. ACM, New York, RecSys’11 (2011b).  https://doi.org/10.1145/2043932.2043962
  45. Quercia, D., Schifanella, R., Aiello, L.M.: The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 116–125. ACM, New York, HT’14 (2014).  https://doi.org/10.1145/2631775.2631799
  46. Raad, E., Chbeir, R., Dipanda, A.: Discovering relationship types between users using profiles and shared photos in a social network. Multimed. Tools Appl. 64(1), 141–170 (2013).  https://doi.org/10.1007/s11042-011-0853-7 CrossRefGoogle Scholar
  47. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  48. Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook, 2nd edn. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  49. Ruotsalo, T., Haav, K., Stoyanov, A., Roche, S., Fani, E., Deliai, R., Mäkelä, E., Kauppinen, T., Hyvönen, E.: Smartmuseum: a mobile recommender system for the web of data. Web Semant. Sci. Serv. Agents World Wide Web 20, 50–67 (2013).  https://doi.org/10.1016/j.websem.2013.03.001 CrossRefGoogle Scholar
  50. Sansonetti, G., Gurini, D.F., Gasparetti, F., Micarelli, A.: Dynamic social recommendation. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 943–947. ACM, New York, ASONAM’17 (2017).  https://doi.org/10.1145/3110025.3110149
  51. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM Press, New York (2001)Google Scholar
  52. Takayuki, S., Munenobu, N., Naoki, S., Yoshihiro, M., Keiichi, Y., Minoru, I.: A personal navigation system with functions to compose tour schedules based on multiple conflicting criteria. IPSJ Digit. Cour. 46(11), 2590–2598 (2005)Google Scholar
  53. Thalhammer, A.: Leveraging linked data analysis for semantic recommender systems. In: Proceedings of the 9th International Conference on the Semantic Web: Research and Applications, pp. 823–827. Springer, Berlin, ESWC’12 (2012)Google Scholar
  54. Totterdell, B.: Adaptive user interfaces. In: Browne, D., Totterdell, A., Norman, D. (eds.) The Evaluation of Adaptive Systems, pp. 161–194. Academic Press, London (1990)Google Scholar
  55. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)CrossRefGoogle Scholar
  56. Varfolomeyev, A., Korzun, D., Ivanovs, A., Soms, H., Petrina, O.: Smart space based recommendation service for historical tourism. Proc. Comput. Sci. 77, 85–91 (2015).  https://doi.org/10.1016/j.procs.2015.12.363 CrossRefGoogle Scholar
  57. Waga, K., Tabarcea, A., Franti, P.: Recommendation of points of interest from user generated data collection. In: International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 550–555 (2012)Google Scholar
  58. Wang, Y., Stash, N., Aroyo, L., Hollink, L., Schreiber, G.: Semantic relations for content-based recommendations. In: Proceedings of the Fifth International Conference on Knowledge Capture, pp. 209–210. ACM, New York, K-CAP’09 (2009).  https://doi.org/10.1145/1597735.1597786
  59. Wang, Y., Wang, L., Li, Y., He, D., Liu, T., Chen, W.: A theoretical analysis of NDCG type ranking measures. CoRR (2013). abs/1304.6480:1–30Google Scholar
  60. Weibelzahl, S.: Evaluation of adaptive systems. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) User Modeling, Lecture Notes in Computer Science, vol. 2109, pp. 292–294. Springer, Berlin (2001)Google Scholar
  61. Weibelzahl, S.: Evaluation of Adaptive Systems. Dissertation, University of Trier, Trier (2003)Google Scholar
  62. Weibelzahl, S., Lauer, C.: Framework for the evaluation of adaptive CBR-systems. In: Reimer, U., Schmitt, S., Vollrath, I. (eds.) Proceedings of the 9th German Workshop on Case-Based Reasoning (GWCBR01), pp. 254–263. Shakerm, Aachen (2001)Google Scholar
  63. Weibelzahl, S., Weber, G.: A database of empirical evaluations of adaptive systems. In: Proceedings of Workshop Lernen–Lehren–Wissen–Adaptivity (LLWA 01), Research Report in Computer Science Nr. 763, University of Dortmund, pp. 302–306 (2001)Google Scholar
  64. Yoon, H., Zheng, Y., Xie, X., Woo, W.: Social itinerary recommendation from user-generated digital trails. Pers. Ubiquitous Comput. 16(5), 469–484 (2012).  https://doi.org/10.1007/s00779-011-0419-8 CrossRefGoogle Scholar
  65. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of the 21st International Conference on Machine Learning, pp. 116–123. ACM, New York, ICML’04 (2004).  https://doi.org/10.1145/1015330.1015332
  66. Zheng, Y., Xie, X.: Learning travel recommendations from user-generated GPS traces. ACM Trans. Intell. Syst. Technol. 2(1), 2:1–2:29 (2011).  https://doi.org/10.1145/1889681.1889683 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EngineeringRoma Tre UniversityRomeItaly
  2. 2.Department of Computer ScienceUniversity of TorinoTorinoItaly

Personalised recommendations