An evolving museum metaphor applied to cultural heritage for personalized content delivery

  • Landy RajaonarivoEmail author
  • Eric Maisel
  • Pierre De Loor


The aim of this article concerns adaptive and personalized navigation in a cultural heritage database. The theoretical grounding of the proposition relies on cognitive science, particularly constructivism and enaction. The navigation is conducted via an intelligent interface through a 3D “living” museum metaphor. The purpose of this interface is to recommend dynamic cultural heritage objects according to a user profile that is computed online from the interactions that a user has with these objects. To this end, objects are linked to semantic structures that represent relations between cultural heritage concepts. The user profile is described in terms of cultural heritage interests. A prototype of this principle is used to evaluate some of the basic hypotheses of this proposition.


Visual metaphor Real-time adaptation Profiling techniques Personalized database exploration Virtual museum 



This work was funded by the ANR (Agence Nationale de la Recherche), Antimoine Project.


  1. Aggarwal, R., Grantcharov, T., Moorthy, K., Hance, J., Darzi, A.: A competency-based virtual reality training curriculum for the acquisition of laparoscopic psychomotor skill. Am. J. Surg. 191(1), 128–133 (2006). CrossRefGoogle Scholar
  2. Albanese, M., Picariello, A., Rinaldi, A.: A technological framework for personalized museum visiting. In: Proceedings of the 10th International Conference on Information Systems Analysis and Synthesis (ISAS 2004) and International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA 2004), pp. 273–278 (2004)Google Scholar
  3. Athukorale, K., Medlar, A., Oulasvirta, A., Jacucci, G., Glowacka, D.: Beyond relevance: adapting exploration/exploitation in information retrieval. In: 21st Annual Meeting on Intelligent User Interface (IUI 2016). ACM (2016)Google Scholar
  4. Aviles Collao, J., Diaz-Kommonen, L., Kaipainen, M., Pietarila, J.: Soft ontologies and similarity cluster tools to facilitate exploration and discovery of cultural heritage ressources. In: Proceedings of International Cultural Heritage Informatics Meeting (ICHIM 03) (2003)Google Scholar
  5. Azzag, H., Picarougne, F., Guinot, C., Venturini, G.: Vrminer: a tool for multimedia database mining with virtual reality. In: Proceedings of Processing and Managing Complex Data for Decision Support (2005)Google Scholar
  6. Bonhert, F., Zukerman, I.: Using viewing time for theme prediction in cultural heritage spaces. In: Proceedings of Austral Asian joint Conference on Artificial Intelligence AI 2007. Advances in Artificial Intelligence (2007)Google Scholar
  7. Bonis, B., Vosinaki, S., Andreou, I., Panayiotopoulos, T.: Adaptive virtual exhibitions. DESIDOC J. Libr. Inf. Technol. 33(3), 183–198 (2013)CrossRefGoogle Scholar
  8. Boyack, K., Wylie, B., Davidson, G.: Domain visualization using vxinsight for science and technology management. J. Am. Soc. Inf. Sci. Technol. 53(9), 764–774 (2002)CrossRefGoogle Scholar
  9. Card, S., Robertson, G., York, W.: The webbook and the web forager: An information workspace for the world-wilde web. In: Human Factors in Computer Systems: Proceedings of the CHI’96 Conference. ACM (1996)Google Scholar
  10. Chittaro, L., Ieronutti, L.: A visual tool for tracing users’ behavior in virtual environments. In: AVI (2004)Google Scholar
  11. Damiano, R., Lieto, A.: Visual metaphors for semantic cultural heritage. In: 7th International Conference on Intelligent Technologies for Interactive Entertainment INTETIN, 2015. IEEE (2015)Google Scholar
  12. De Loor, P., Manac’h, K., Tisseau, J.: Enaction-based artificial intelligence: toward co-evolution with humans in the loop. Minds Mach. 19(3), 319–343 (2009). CrossRefGoogle Scholar
  13. Donalek, C., Djorgovski, S., Cioc, A., Wang, A., Zhang, J., Lawler, E., Yeh, S.: Immersive and collaborative data visualization using virtual reality platform. In: Proceedings of IEEE International Conference on Big Data, pp. 609–614 (2014)Google Scholar
  14. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999). CrossRefGoogle Scholar
  15. Dörk, M., Williamson, C., Carpendale, S.: Navigating tomorrow’s web: from searching and browsing to visual exploration. ACM Trans. Web (TWEB) 6(3), 13 (2012)Google Scholar
  16. Dörk, M., Carpendale, S., Collins, C., Williamson, C.: Visgets : Coordinated visualizations for web-based information exploration and discovery. In: IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 1205–1212. IEEE (2008)Google Scholar
  17. Hoareau, C., Querrec, R., Buche, C., Ganier, F.: Evaluation of internal and external validity of a virtual environment for learning a long procedure. Int. J. Hum. Comput. Interact. 33(10), 786–798 (2017). CrossRefGoogle Scholar
  18. Jennett, C., Cox, A.L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., Walton, A.: Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 66(9), 641–661 (2008)CrossRefGoogle Scholar
  19. Kaipainen, M., Normak, P., Niglas, K., Kippar, J., Laanpere, M.: Soft ontologies, spatial representation and multi-perspective explorability. Expert Syst. 25(05), 474–483 (2008)CrossRefGoogle Scholar
  20. Keim, D.: Information visualization and visual data mining. In: Proceedings of IEEE Transactions on Visualization and Computer Graphics, vol. 8 (2002)Google Scholar
  21. Kelly, D., Fu, X.: Elicitation of term relevance feedback : an investigation of term source and context. SIGIR 2006, 453–460 (2006)Google Scholar
  22. Koutsoudis, A., Makarona, C., Pavlidis, G.: Content-based navigation within virtual museums. J. Adv. Comput. Sci. Technol. 1(2), 73–81 (2012)CrossRefGoogle Scholar
  23. Krosnick, J.a., Presser, S.: Question and questionnaire design. (2010)
  24. Kuflik, T., Boger, Z., Zancanaro, M.: Analysis and Prediction of Museum Visitors’ Behavioral Pattern Types, pp. 161–176. Springer, Berlin (2012). Google Scholar
  25. Le patrimoine des communes du Finistère. Flohic (1998)Google Scholar
  26. Li, W., Goodchild, M.F., Raskin, R.: Towards geospatial semantic search: exploiting latent semantic relations in geospatial data. Int. J. Digit. Earth 7(1), 17–37 (2014)CrossRefGoogle Scholar
  27. Noë, A.: Action in Perception. A Bradford Book. MIT Press, Cambridge (2004). ISBN: 9780262140881Google Scholar
  28. Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo: linked data exploration based on knowledge patterns. Semant. Web 8(1), 87–112 (2017)CrossRefGoogle Scholar
  29. O’Brien, H.L., Cairns, P., Hall, M.: A practical approach to measuring user engagement with the refined user engagement scale (ues) and new ues short form. Int. J. Hum. Comput. Stud. 112, 28–39 (2018)CrossRefGoogle Scholar
  30. Piaget, J.: Play, Dreams and Imitation in Children. Routledge, Abingdon (1951)Google Scholar
  31. Poco, J., Dasgupta, A., Wei, Y., Hargrove, W., Schwalm, C., Cook, R., Bertini, E., Silva, C.: Similarityexplorer: A visual inter-comparison tool for multifaceted climate data. In: Computer Graphics Forum, vol. 33, pp. 341–350. Wiley Online Library (2014)Google Scholar
  32. Robertson, G., Czerwinski, M., Larson, K., Robins, D., D., T., van Dantzich, M.: Data mountain: using spatial memory for document management. In: ACM Symposium on User Interface Software and Technology, pp. 153–162. ACM (1998)Google Scholar
  33. dos Santos, C.T., Osorio, F.S.: Adaptive: an intelligent virtual environment and its application in e-commerce. In: Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International, pp. 468–473. IEEE (2004)Google Scholar
  34. Sjöberg, M., Vitaniemi, V., Laaksonen, J., Hokela, T.: Analysis of semantic information available in an image collection augmented with auxiliary data. In: Artificial Intelligence Applications and Innovations, 3rd IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI) (2006)Google Scholar
  35. Sookhanaphibarn, K., Thawonmas, R.: An on-line classification approach of visitor’s movement in 3d virtual museums. In: Proceedings of the International Federation of Information Processing (IFIP), Advances in Information and Communication Technology (2010)Google Scholar
  36. Sparacino, F.: Sto(ry)chastics : a Bayesian network architecture for combined user modeling, sensor fusion and computational storytelling for interactive spaces (2001)Google Scholar
  37. Sparacino, F., De Vaul, R., Wren, C., Mac Neil, G., Daveport, G., Pentland, A.: City of news. In: SIGGRAPH99, Visual Proceedings, Emerging Technologies (1999)Google Scholar
  38. Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Krüger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in peach. User Modeling and User-Adapted Interaction 17(3), 257–304 (2007)CrossRefGoogle Scholar
  39. Sun, H., Jiang, C., Ding, Z., Wang, P., Zhou, M.: Topic-oriented exploratory search based on an indexing network. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 234–247 (2016). CrossRefGoogle Scholar
  40. Svanaes, D.: Interaction design for and with the lived body: some implications of merleau-ponty’s phenomenology. In: Proceedings of ACM Transactions on Computer-Human Interaction (TOCHI) - Special Issue on the Theory and Practice of Embodied Interaction in HCI and Interaction Design, vol. 20 (2013)Google Scholar
  41. Teras, M., Raghunathan, S.: Big data visualization in immersive virtual reality environments: embodied phenomenological perspectives to interaction. ICTACT J. Soft Comput. 05(04), 1009–1015 (2015)CrossRefGoogle Scholar
  42. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. MIT Press, Cambridge (1993)Google Scholar
  43. Veron, E., Levasseur, M.: Bibliothèque Publique d’Information, Centre Georges Pompidou (1983)Google Scholar
  44. Wang, Y., Aroyo, L.M., Stash, N., Rutledge, L.: Interactive user modeling for personalized access to museum collections: the rijksmuseum case study. In: Conati, C., McCoy, K., Paliouras, G. (eds.) User Modeling 2007, pp. 385–389. Springer Berlin Heidelberg, Berlin (2007). ISBN: 978-3-540-73078-1CrossRefGoogle Scholar
  45. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics (1994)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Lab-STICCLorientFrance

Personalised recommendations