Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Computational personality recognition in social media

Abstract

A variety of approaches have been recently proposed to automatically infer users’ personality from their user generated content in social media. Approaches differ in terms of the machine learning algorithms and the feature sets used, type of utilized footprint, and the social media environment used to collect the data. In this paper, we perform a comparative analysis of state-of-the-art computational personality recognition methods on a varied set of social media ground truth data from Facebook, Twitter and YouTube. We answer three questions: (1) Should personality prediction be treated as a multi-label prediction task (i.e., all personality traits of a given user are predicted at once), or should each trait be identified separately? (2) Which predictive features work well across different on-line environments? and (3) What is the decay in accuracy when porting models trained in one social media environment to another?

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    https://www.idiap.ch/dataset/youtube-personality.

  2. 2.

    https://www.ocf.berkeley.edu/~johnlab/bfi.htm.

  3. 3.

    http://www.uni-weimar.de/medien/webis/events/pan-15.

  4. 4.

    http://www.psych.rl.ac.uk/User_Manual_v1_0.html.

  5. 5.

    http://sentistrength.wlv.ac.uk.

  6. 6.

    http://splice.cmi.arizona.edu.

  7. 7.

    http://mulan.sourceforge.net/.

  8. 8.

    We compute the correlation among all features and personality traits and find the significant correlated features. The full list of features and their correlation scores can be downloaded from the supplementary materials of this manuscript.

References

  1. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fmri: Investigating and shaping social mechanisms in the real world. Pervasive Mob. Comput. 7(6), 643–659 (2011)

  2. Aran, O., Gatica-Perez, D.: Cross-domain personality prediction: from video blogs to small group meetings. In: Proceedings of the 15th ACM International Conference on Multimodal Interaction, pp. 127–130. ACM (2013)

  3. Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., Stillwell, D.: Personality and patterns of Facebook usage. In: Proceedings of the 3rd Annual ACM Web Science Conference (Web-Sci), pp. 24–32. ACM (2012)

  4. Back, M.D., Stopfer, J.M., Vazire, S., Gaddis, S., Schmukle, S.C., Egloff, B., Gosling, S.D.: Facebook profiles reflect actual personality, not self-idealization. Psychol. Sci. 21, 372–374 (2010)

  5. Bai, S., Hao, B., Li, A., Yuan, S., Gao, R., Zhu, T.: Predicting Big Five personality traits of microblog users. In: Proceedings of the IEEE/WIC/ACM WI-IAT, vol. 1, pp. 501–508 (2013)

  6. Biel, J., Gatica-Perez, D.: The YouTube lens: crowdsourced personality impressions and audiovisual analysis of vlogs. IEEE Trans. Multimed. 15(1), 41–55 (2013)

  7. Biel, J.I., Aran, O., Gatica-Perez, D.: You are known by how you vlog: Personality impressions and nonverbal behavior in youtube. In: Proceedings of the AAAI International Conference on Weblogs and Social Media (ICWSM), pp. 446–449 (2011)

  8. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 55–63 (1998)

  9. Cantador, I., Fernández-Tobías, I., Bellogín, A., Kosinski, M., Stillwell, D.: Relating personality types with user preferences in multiple entertainment domains. In: Proceedings of the 1st Workshop on Emotion and Personality in Personalized Services (EMPIRE) (2013)

  10. Celli, F., Lepri, B., Biel, J.I., Gatica-Perez, D., Riccardi, G., Pianesi, F.: The workshop on computational personality recognition 2014. In: Proceedings of the ACM International Conference on Multimedia, pp. 1245–1246. ACM (2014)

  11. Celli, F., Rossi, L.: The role of emotional stability in Twitter conversations. In: Proceedings of the Workshop on Semantic Analysis in Social Media. Association for Computational Linguistics, pp. 10–17 (2012)

  12. Costa, P.T., McCrae, R.R.: The revised NEO personality inventory (NEO-PI-R). SAGE Handb. Pers. Theory Assess. 2, 179–198 (2008)

  13. Counts, S., Stecher, K.: Self-presentation of personality during online profile creation. In: Proceedings of the International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 191–194 (2009)

  14. de Oliveira, R., Karatzoglou, A., Cerezo, P.C., de Vicuña, A.A.L., Oliver, N.: Towards a psychographic user model from mobile phone usage. In: Proceedings of the International Conference on Human Factors in Computing Systems, CHI, pp. 2191–2196 (2011)

  15. Farnadi, G., Sitaraman, G., Rohani, M., Kosinski, M., Stillwell, D., Moens, M., Davalos, S., De Cock, M.: How are you doing? Emotions and personality in Facebook. In: Proceedings of the EMPIRE, pp. 45–56 (2014)

  16. Farnadi, G., Sushmita, S., Sitaraman, G., Ton, N., De Cock, M., Davalos, S.: A multivariate regression approach to personality impression recognition of vloggers. In: Proceedings of the WCPR, pp. 1–6 (2014)

  17. Farnadi, G., Zoghbi, S., Moens, M., De Cock, M.: Recognising personality traits using Facebook status updates. In: Proceedings of the WCPR, pp. 14–18 (2013)

  18. Fernandez-Tobas, I., Braunhofer, M., Elahi, M., Ricci, F., Cantador, I.: Alleviating the new user problem in collaborative filtering by exploiting personality information. User Modeling and User-Adapted Interaction (2015)

  19. Gill, A.J., Oberlander, J., Austin, E.: Rating e-mail personality at zero acquaintance. Pers. Individ. Differ. 40(3), 497–507 (2006)

  20. Giota, K.G., Kleftaras, G.: The role of personality and depression in problematic use of social networking sites in Greece. J. Psychosoc. Res. Cyberspace 7(3) (2013). doi:10.5817/cp2013-3-6

  21. Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference, pp. 149–156. IEEE (2011)

  22. Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. In: CHI’11 Extended Abstracts on Human Factors in Computing Systems, pp. 253–262. ACM (2011)

  23. Goldberg, L.R., Johnson, J.A., Eber, H.W., Hogan, R., Ashton, M.C., Cloninger, C.R., Gough, H.G.: The international personality item pool and the future of public-domain personality measures. J. Res. Pers. 40(1), 84–96 (2006)

  24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

  25. Hagger-Johnson, G., Egan, V., Stillwell, D.: Are social networking profiles reliable indicators of sensational interests? J. Res. Pers. 45(1), 71–76 (2011)

  26. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)

  27. Hu, R., Pu, P.: Enhancing collaborative filtering systems with personality information. In: Proceedings of the ACM RecSys, pp. 197–204 (2011)

  28. Hughes, D.J., Rowe, M., Batey, M., Lee, A.: A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage. Comput. Hum. Behav. 28(2), 561–569 (2012)

  29. Iacobelli, F., Culotta, A.: Too neurotic, not too friendly: structured personality classification on textual data. In: Proceedings of the Workshop on Computational Personality Recognition, pp. 19–22. AAAI Press, Melon Park (2013)

  30. John, O.P., Srivastava, S.: The Big Five trait taxonomy: history, measurement, and theoretical perspectives. Handb. Pers. Theory Res. 2, 102–138 (1999)

  31. Jolliffe, I.: Principal Component Analysis. Wiley, New York (2002)

  32. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective decision trees. In: Proceedings of the ECML, pp. 624–631 (2007)

  33. Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., Graepel, T.: Manifestations of user personality in website choice and behaviour on online social networks. Mach. Learn. 95(3), 1–24 (2013)

  34. Kosinski, M., Stillwell, D.J., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. (PNAS) 110, 5802–5805 (2013)

  35. Lambiotte, R., Kosinski, M.: Tracking the digital footprints of personality. In: Proceedings of the Institute of Electrical and Electronics Engineers (PIEEE), pp. 1935–1939 (2014)

  36. Lee, C., Lee, G.G.: Information gain and divergence-based feature selection for machine learning-based text categorization. Inf. Process. Manag. 42(1), 155–165 (2006)

  37. Lee, K.M., Nass, C.: Designing social presence of social actors in human computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03, pp. 289–296. ACM (2003)

  38. Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30, 457–501 (2007)

  39. Mohammad, S., Zhu, X., Martin, J.: Semantic role labeling of emotions in tweets. In: Proceedings of the WASSA, pp. 32–41 (2014)

  40. Mohammad, S.M., Kiritchenko, S.: Using nuances of emotion to identify personality. arXiv preprint. arXiv:1309.6352 (2013)

  41. Nguyen, T., Phung, D.Q., Adams, B., Venkatesh, S.: Towards discovery of influence and personality traits through social link prediction. In: Proceedings of ICWSM, pp. 566–569 (2011)

  42. Oliveira, R.D., Cherubini, M., Oliver, N.: Influence of personality on satisfaction with mobile phone services. ACM Trans. Comput. Hum. Interact. 20(2), 10:1–10:23 (2013)

  43. Ozer, D.J., Benet-Martinez, V.: Personality and the prediction of consequential outcomes. Annu. Rev. Psychol. 57, 401–421 (2006)

  44. Park, G., Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Kosinski, M., Stillwell, D.J., Ungar, L.H., Seligman, M.E.: Automatic personality assessment through social media language. J. Pers. Soc. Psychol. 108(6), 934 (2015)

  45. Pennebaker, J.W., King, L.A.: Linguistic styles: language use as an individual difference. J. Pers. Soc. Psychol. 77(6), 1296 (1999)

  46. Polzehl, T., Moller, S., Metze, F.: Automatically assessing personality from speech. In: Semantic Computing (ICSC), 2010 IEEE Fourth International Conference, pp. 134–140. IEEE (2010)

  47. Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our Twitter profiles, our selves: predicting personality with Twitter. In: Privacy, Security, Risk and Trust (passat), 2011 IEEE Third International Conference on Social Computing (socialcom), pp. 180–185. IEEE (2011)

  48. Quercia, D., Lambiotte, R., Kosinski, M., Stillwell, D.J., Crowcroft, J.: The personality of popular Facebook users. In: Proceedings of the Conference on Computer Supported Cooperative Work, pp. 955–964 (2012)

  49. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2014)

  50. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)

  51. Saati, B., Salem, M., Brinkman, W.P.: Towards customized user interface skins: investigating user personality and skin colour. Proc. HCI 2005(2), 89–93 (2005)

  52. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M.E., et al.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PloS one 8(9), e73791 (2013)

  53. Stillwell, D.J., Kosinski, M.: myPersonality Project Website. myPersonality Project. http://mypersonality.org (2015)

  54. Tausczik, Y.R., Pennebaker, J.W.: The Psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010)

  55. Xioufis, E.S., Groves, W., Tsoumakas, G., Vlahavas, I.P.: Multi-label classification methods for multi-target regression. arXiv preprint. arXiv:1211.6581 (2012)

  56. Youyou, W., Kosinski, M., Stillwell, D.J.: Computer-based personality judgements are more accurate than those made by humans. Proc. Natl. Acad. Sci. (PNAS) 112(4), 1036–1040 (2015)

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was funded in part by the SBO-program of the Flemish Agency for Innovation by Science and Technology (IWT-SBO-Nr. 110067).

Author information

Correspondence to Golnoosh Farnadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 10 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farnadi, G., Sitaraman, G., Sushmita, S. et al. Computational personality recognition in social media. User Model User-Adap Inter 26, 109–142 (2016). https://doi.org/10.1007/s11257-016-9171-0

Download citation

Keywords

  • Big Five personality
  • Social media
  • User generated content
  • Multivariate regression
  • Feature analysis