User Modeling and User-Adapted Interaction

, Volume 24, Issue 1–2, pp 121–174 | Cite as

Hybreed: A software framework for developing context-aware hybrid recommender systems

  • Tim Hussein
  • Timm Linder
  • Werner Gaulke
  • Jürgen Ziegler
Original Paper

Abstract

This article introduces Hybreed, a software framework for building complex context-aware applications, together with a set of components that are specifically targeted at developing hybrid, context-aware recommender systems. Hybreed is based on a concept for processing context that we call dynamic contextualization. The underlying notion of context is very generic, enabling application developers to exploit sensor-based physical factors as well as factors derived from user models or user interaction. This approach is well aligned with context definitions that emphasize the dynamic and activity-oriented nature of context. As an extension of the generic framework, we describe Hybreed RecViews, a set of components facilitating the development of context-aware and hybrid recommender systems. With Hybreed and RecViews, developers can rapidly develop context-aware applications that generate recommendations for both individual users and groups. The framework provides a range of recommendation algorithms and strategies for producing group recommendations as well as templates for combining different methods into hybrid recommenders. Hybreed also provides means for integrating existing user or product data from external sources such as social networks. It combines aspects known from context processing frameworks with features of state-of-the-art recommender system frameworks, aspects that have been addressed only separately in previous research. To our knowledge, Hybreed is the first framework to cover all these aspects in an integrated manner. To evaluate the framework and its conceptual foundation, we verified its capabilities in three different use cases. The evaluation also comprises a comparative assessment of Hybreed’s functional features, a comparison to existing frameworks, and a user study assessing its usability for developers. The results of this study indicate that Hybreed is intuitive to use and extend by developers.

Keywords

Recommender systems Group recommendations Context-aware recommendations Distributed user models Framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abowd G.D., Atkeson C.G., Hong J., Long S., Kooper R., Pinkerton M.: Cyberguide: a mobile context-aware tour guide. Wirel. Netw. 3(5), 421–433 (1997)CrossRefGoogle Scholar
  2. Adomavicius G., Tuzhilin A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. Adomavicius G., Tuzhilin A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds) Recommender Systems Handbook, pp. 217–253. Springer, Berlin (2010)Google Scholar
  4. Adomavicius G., Sankaranarayanan R., Sen S., Tuzhilin A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRefGoogle Scholar
  5. Albert, W., Dixon, E.: Is this what you expected? The use of expectation measures in usability testing. In: UPA ’03: Proceedings of the Usability Professionals Association 2003, Scottsdale (2003)Google Scholar
  6. Anand, S., Mobasher, B.: Contextual recommendation. In: Berendt, B., Hotho, A., Mladenic, D., Semeraro, G. (eds.) From Web to Social Web: Discovering and Deploying User and Content Profiles, pp. 142–160. Springer, Berlin (2007)Google Scholar
  7. Assad, M., Carmichael, D.J., Kay, J., Kummerfeld, B.: PersonisAD: distributed, active, scrutable model framework for context-aware services. In: PERVASIVE ’07: Proceedings of the 5th International Conference on Pervasive Computing, pp. 55–72. Springer, Berlin (2007)Google Scholar
  8. Balabanovic M., Shoham Y.: Combining content-based and collaborative recommendation. Commun. ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  9. Baldauf M., Dustdar S., Rosenberg F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  10. Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model. User-Adap. Inter. (this issue) (2013)Google Scholar
  11. Bangor A., Kortum P., Miller J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)Google Scholar
  12. Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey A.K., Kokinov B.N., Leake D.B., Turner R.M. (eds.) CONTEXT ’05: Proceedings of the 5th International and Interdisciplinary Conference on Context, Lecture Notes in Computer Science, vol. 3554, pp. 29–40. Springer, Heidelberg (2005)Google Scholar
  13. Beliakov G., Calvo T., James S.: Aggregation of preferences in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds) Recommender Systems Handbook, pp. 705–734. Springer, Berlin (2010)Google Scholar
  14. Berkovsky, S., Freyne, J.: Group-based recipe recommendations: analysis of data aggregation strategies. In: RecSys ’10: Proceedings of the 4th ACM Conference on Recommender Systems, pp. 111–118. ACM, New York (2010)Google Scholar
  15. Brooke J.: SUS—A Quick and Dirty Usability Scale. Usability Evaluation in Industry. Taylor & Francis, London (1996)Google Scholar
  16. Burke R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  17. Burke, R.: Hybrid web recommender systems. In: Brusilovsky P., Kobsa A., Nejdl W. (eds.) The Adaptive Web. Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, vol. 4321, pp. 377–408. Springer, Berlin (2007)Google Scholar
  18. Carmagnola F., Cena F., Console L., Cortassa O., Gena C., Goy A., Torre I., Toso A., Vernero F.: Tag-based user modeling for social multi-device adaptive guides. User Model. User-Adap. Inter. 18(5), 497–538 (2008)CrossRefGoogle Scholar
  19. Carmagnola F., Cena F., Gena C.: User model interoperability: a survey. User Model. User-Adap. Inter. 21(3), 1–47 (2011)CrossRefGoogle Scholar
  20. Chen, H.: An intelligent broker architecture for pervasive context-aware systems. Ph.D. thesis, University of Maryland, Baltimore (2004)Google Scholar
  21. Chi, E.: Transient user profiling. In: Proceedings of the Workshop on User Profiling (held in conjunction with CHI 2004), Vienna (2004)Google Scholar
  22. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining content-based and collaborative filters in an online newspaper. In: Proceedings of ACM SIGIR Workshop on Recommender Systems. ACM, New York (1999)Google Scholar
  23. Collins A.M., Loftus E.F.: A spreading activation theory of semantic processing. Psychol. Rev. 82(6), 407–428 (1975)CrossRefGoogle Scholar
  24. Costa, P.D.: Architectural support for context-aware applications: From context models to service platforms. Ph.D. thesis, University of Twende, Enschede (2007)Google Scholar
  25. Crestani F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  26. Crossen, A., Budzik, J., Hammond, K.: Flytrap: intelligent group music recommendation. In: IUI ’02: Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 184–185. ACM, New York (2002)Google Scholar
  27. Dey, A.K.: Context-aware computing: the cyberdesk project. In: Proceedings of the AIII 1998 Spring Symposium on Intelligent Environments, pp. 51–54. AIII Press, Palo Alto (1998)Google Scholar
  28. Dey A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  29. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: Proceedings of the CHI 2000 Workshop on the What, Who, Where, When, and How of Context-Awareness. ACM Press, The Hague (2000)Google Scholar
  30. Dey, A.K., Abowd, G.D., Wood, A.: Cyberdesk: a framework for providing self-integrating context-aware services. In: IUI ’98: Proceedings of the International Conference on Intelligent User Interfaces, pp. 47–54. ACM, New York (1998)Google Scholar
  31. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum-Comput. Interact. 16(2–4):97–166 (2001)Google Scholar
  32. Dix, A., Katifori, A., Lepouras, G., Vassilakis, C., Shabir, N.: Spreading activation over ontology-based resources: from personal context to web scale reasoning. Int. J. Semant. Comput. Special issue on web scale reasoning: scalable, tolerant and dynamic, 4(1):59–102 (2010)Google Scholar
  33. Dourish P.: What we talk about when we talk about context. Pers. Ubiquitous Comput 8(1), 19–30 (2004)CrossRefGoogle Scholar
  34. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW ’01: Proceedings of the 10th International Conference on World Wide Web, WWW ’01, pp. 613–622. ACM, New York (2001)Google Scholar
  35. Ekstrand, M.D., Ludwig, M., Konstan, J.A., Riedl, J.: Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit. In: RecSys ’11: Proceedings of the 5th ACM Conference on Recommender Systems, pp. 133–140. ACM, New York (2011)Google Scholar
  36. Esposito A., Tarricone L., Zappatore M., Catarinucci L., Colella R.: A framework for context-aware home-health monitoring. Int. J. Auton. Adapt. Commun. Syst. 3(1), 75–91 (2010)CrossRefGoogle Scholar
  37. Freyne, J., Smyth, B.: Cooperating search communities. In: Wade V., Ashman H., Smyth B. (eds.) AH ’06: Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, vol. 4018, pp. 101–110. Springer, Berlin (2006)Google Scholar
  38. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a free recommender system library. In: RecSys ’11: Proceedings of the 5th ACM Conference on Recommender Systems, pp. 305–308. ACM, New York (2011)Google Scholar
  39. Garcia, I., Sebastia, L., Onaindia, E., Guzman, C.: A group recommender system for tourist activities. In: Noia T.D., Buccafurri F. (eds.) E-Commerce and Web Technologies, Lecture Notes in Computer Science, vol. 5692, pp. 26–37. Springer, Berlin (2009)Google Scholar
  40. Goodwin, C., Duranti, A.: Rethinking context: an introduction. In: Duranti A., Goodwin C. (eds.) Rethinking Context: Language as an Interactive Phenomenon, No. 11 in Studies in the Social and Cultural Foundation of Language. Cambridge University Press, Cambridge (1992)Google Scholar
  41. Haake J., Hussein T., Joop B., Lukosch S., Veiel D., Ziegler J.: Modeling and exploiting context for adaptive collaboration. Int. J. Coop. Inf. Syst. 19(1-2), 71–120 (2010)CrossRefGoogle Scholar
  42. Han, E.H., Karypis, G.: Feature-based recommendation system. In: CIKM ’05: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 446–452. ACM, New York (2005)Google Scholar
  43. Heckmann, D.: Ubiquitous user modeling. Ph.D. thesis, Saarland University, Saarbruecken (2005)Google Scholar
  44. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for distributed context-aware systems. In: DOA ’10: Proceedings of the International Symposium on Distributed Objects and Applications, No. 3760 in Lecture Notes in Computer Science, pp. 846–863. Springer, Berlin (2005)Google Scholar
  45. Herlocker J.L., Konstan J.A.: Content-independent task-focused recommendation. IEEE Internet Comput. 5(6), 40–47 (2001)CrossRefGoogle Scholar
  46. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Retschitzegger, W.: Context-awareness on mobile devices—the Hydrogen approach. In: HICSS ’03: Proceedings of the 36th Annual Hawaii International Conference on System Sciences. IEEE, Washington, DC (2003)Google Scholar
  47. Hussein, T., Münter, D.: Automated generation of a faceted navigation interface using semantic models. In: Hussein T., Ziegler J., Lukosch S., Dix A. (eds.) SEMAIS ’10: Proceedings of the 1st Workshop on Semantic Models for Adaptive Interactive Systems. ACM, New York (2010)Google Scholar
  48. Jameson, A.: More than the sum of its members: challenges for group recommender systems. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, Gallipoli, pp. 48–54 (2004)Google Scholar
  49. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky P., Kobsa A., Nejdl W. (eds.) The Adaptive Web. Methods and Strategies of Web Personalization, Lecture Notes in Computer Science, vol. 4321, pp. 596–627. Springer, Berlin (2007)Google Scholar
  50. Jannach D., Zanker M., Felfernig A., Friedrich G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  51. Jin, X., Zhou, Y., Mobasher, B.: Task-oriented web user modeling for recommendation. In: UM ’05: Proceedings of the 10th International Conference on User Modeling, Lecture Notes in Computer Science, vol. 3538, pp. 109–118. Springer, Berlin (2005)Google Scholar
  52. Kaltz, J.W.: An engineering method for adaptive, context-aware web applications. Ph.D. thesis, University of Duisburg-Essen, Essen (2006)Google Scholar
  53. Kaminskas, M., Ricci, F.: Location-adapted music recommendation using tags. In: Konstan J.A., Marzo J.L., Conejo R., Oliver N. (eds.) UMAP ’11: Proceedings of the 19th International Conference on User Modeling, Adaptation, and Personalization, Girona, pp. 183–194 (2011)Google Scholar
  54. Korpipää P., Mantyjarvi J., Kela J., Keranen H., Malm E.J.: Managing context information in mobile devices. IEEE Pervasive Comput. 2, 42–51 (2003)CrossRefGoogle Scholar
  55. Lim, B.Y., Dey, A.K.: Toolkit to support intelligibility in context-aware applications. In: UBICOMP ’10: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 13–22. ACM, New York (2010)Google Scholar
  56. Linden G., Smith B., York J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  57. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: IUI ’10: Proceeding of the 14th International Conference on Intelligent User Interfaces, pp. 31–40, ACM, New York (2010)Google Scholar
  58. Ma H., Zhou T.C., Lyu M.R., King I.: Improving recommender systems by incorporating social contextual information. ACM Trans. Inf. Syst. 29(2), 1–23 (2011)CrossRefGoogle Scholar
  59. Masthoff J.: Group modeling: selecting a sequence of television items to suit a group of viewers. User Model. User-Adap. Inter. 14(1), 37–85 (2004)CrossRefGoogle Scholar
  60. Masthoff J.: Group recommender systems: combining individual models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds) Recommender Systems Handbook, pp. 677–702. Springer, Berlin (2010)Google Scholar
  61. Masthoff J., Gatt A.: In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Model. User-Adap. Inter. 16(3–4), 281–319 (2006)CrossRefGoogle Scholar
  62. Mayrhofer, R.: An architecture for context prediction. Ph.D. thesis, Johannes Kepler University of Linz, Linz (2004)Google Scholar
  63. McCarthy, J.F., Anagnost, T.D.: Musicfx: an arbiter of group preferences for computer supported collaborative workouts. In: CSCW ’98: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, pp. 363–372. ACM, New York (1998)Google Scholar
  64. Microsoft (ed.): Microsoft Application Architecture Guide. Microsoft Press, Redmond (2009)Google Scholar
  65. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, ACM, New York, NY, USA, pp. 195–204 (2000)Google Scholar
  66. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: a recommender system for groups of users. In: ECSCW’01: Proceedings of the 7th Conference on European Conference on Computer Supported Cooperative Work, pp. 199–218. Kluwer, Norwell (2001)Google Scholar
  67. Palmisano C., Tuzhilin A., Gorgoglione M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)CrossRefGoogle Scholar
  68. Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. In: RecSys ’09: Proceedings of the 3rd ACM Conference on Recommender Systems, pp. 265–268. ACM, New York (2009)Google Scholar
  69. Panniello, U., Tuzhilin, A., Gorgoglione, M.: Comparing context-aware recommender systems in terms of accuracy and diversity: which contextual modeling, pre-filtering and post-filtering methods perform the best. User Model. User-Adap. Inter. (this issue) (2013)Google Scholar
  70. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: ISWC’98: Proceedings of the 2nd International Symposium on Wearable Computers, pp. 92–99. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  71. Pazzani M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5-6), 393–408 (1999)CrossRefGoogle Scholar
  72. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW ’94: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186. ACM, New York (1994)Google Scholar
  73. Ricci F., Rokach L., Shapira B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds) Recommender Systems Handbook, pp. 1–35. Springer, Berlin (2010)Google Scholar
  74. Roman M., Hess C., Cerqueira R., Ranganathan A., Campbell R.H., Nahrstedt K.: Gaia: a middleware platform for active spaces. ACM SIGMOBILE Mobile Comput. Commun. Rev. 6(4), 65–67 (2002)CrossRefGoogle Scholar
  75. Sørensen, C.F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-Limon, H.: Mpac ’04: a context-aware middleware for applications in mobile ad hoc environments. In: Proceedings of the 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing, pp. 107–110. ACM, New York (2004)Google Scholar
  76. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context Modelling, Reasoning and Management as part of the 6th International Conference on Ubiquitous Computing (UbiComp 2004), Nottingham (2004)Google Scholar
  77. van Setten, M.: Supporting people in finding information: hybrid recommender systems and goal-based structuring. Ph.D. thesis, University of Twente, Enschede (2005)Google Scholar
  78. Winograd T.: Architectures for context. Hum-Comput. Interact. 16(2), 401–419 (2001)CrossRefGoogle Scholar
  79. Yau S.S., Karim F.: A context-sensitive middleware-based approach to dynamically integrating mobile devices into computational infrastructures. J. Parallel Distrib. Comput. 64(2), 301–317 (2004)CrossRefGoogle Scholar
  80. Yau S.S., Karim F., Wang Y., Wang B., Gupta S.K.S.: Reconfigurable context-sensitive middleware for pervasive computing. IEEE Pervasive Comput. 1(3), 33–40 (2002)CrossRefGoogle Scholar
  81. Zadeh L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  82. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov B., Brézillon P., Petkov G. (eds.) Context ’07: Proceedings of 6th International and Interdisciplinary Conference on Modeling and Using Context, Lecture Notes in Computer Science, pp. 558–571. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Tim Hussein
    • 1
  • Timm Linder
    • 1
  • Werner Gaulke
    • 1
  • Jürgen Ziegler
    • 1
  1. 1.Interactive Systems Research GroupUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations