CTRL: A research framework for providing adaptive collaborative learning support

  • Erin WalkerEmail author
  • Nikol Rummel
  • Kenneth R. Koedinger
Original Paper


There is evidence suggesting that providing adaptive assistance to collaborative interactions might be a good way of improving the effectiveness of collaborative activities. In this paper, we introduce the Collaborative Tutoring Research Lab (CTRL), a research-oriented framework for adaptive collaborative learning support that enables researchers to combine different types of adaptive support, particularly by using domain-specific models as input to domain-general components in order to create more complex tutoring functionality. Additionally, the framework allows researchers to implement comparison conditions by making it easier to vary single factors of the adaptive intervention. We evaluated CTRL by designing adaptive and fixed support for a peer tutoring setting, and instantiating the framework using those two collaborative scenarios and an individual tutoring scenario. As part of the implementation, we integrated pre-existing components from the Cognitive Tutor Algebra (CTA) with custom-built components. The three conditions were then compared in a controlled classroom study, and the results helped us to contribute to learning sciences research in peer tutoring. CTRL can be generalized to other collaborative scenarios, but the ease of implementation relates to the complexity of the existing components used. CTRL as a framework has yielded a full implementation of an adaptive support system and a controlled evaluation in the classroom.


Adaptive collaborative learning support Intelligent collaborative learning systems Cognitive tutoring systems Collaboration modeling Peer tutoring Classroom evaluation 


  1. Aleven V., Koedinger K.R.: An effective meta-cognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cogn. Sci. 26(2), 147–179 (2002)CrossRefGoogle Scholar
  2. Aleven V., McLaren B., Roll I., Koedinger K.: Toward meta-cognitive tutoring: a model of help seeking with a Cognitive Tutor. Int. J. Artif. Intell. Educ. 16, 101–128 (2006)Google Scholar
  3. Anderson, J.R., Pelletier, R.: A development system for model-tracing tutors. In: Birnbaum, L. (eds.) Proceedings of the 1991 International Conference of the Learning Sciences, pp. 1–8. Charlottesville, AACE, VA (1991)Google Scholar
  4. Azevedo R.: Computer environments as metacognitive tools for enhancing learning. Educ. Psychol. 40(4), 193–197 (2005)CrossRefMathSciNetGoogle Scholar
  5. Baghaei N., Mitrovic A., Irwin W.: Supporting collaborative learning and problem solving in a constraint-based CSCL environment for UML class diagrams. Int. J. Comput. Support. Collab. Learn. 2(2–3), 159–190 (2007)CrossRefGoogle Scholar
  6. Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, S., Roll, I., Wagner, A.Z., Naim, M., Raspat, J., Baker, D.J., Beck, J.: Adapting to when students game an intelligent tutoring system. In: Ikeda, M., Ashley, K., Chan, T.W. (eds.) Proceedings of 8th International Conference on Intelligent Tutoring Systems, pp. 392–401. Springer Verlag, Berlin (2006)Google Scholar
  7. Beck, J.E., Mostow, J., Bey, J.: Can automated questions scaffold children’s reading comprehension? In: Lester, J.C., Vicari R.M., Paraguacu, F. (eds.) Proceedings of 7th International Conference on Intelligent Tutoring Systems, pp. 478–490. Springer Verlag, Berlin (2004)Google Scholar
  8. Berge O., Slotta J.: Learning technology standards and inquiry-based learning. In: Koohang, A., Harman, K. (eds) Learning Objects and Instructional Design, pp. 327–358. Informing Science Press, Santa Rosa (2007)Google Scholar
  9. Biswas G., Leelawong K., Schwartz D., Vye N.: The Teachable Agents Group at Vanderbilt: Learning by teaching: a new agent paradigm for educational software. Appl. Artif. Intell. 19(3), 363–392 (2005)CrossRefGoogle Scholar
  10. Carnegie learning: Carnegie learning, Inc. Math Curricula with Proven Success. Retrieved 1 Oct 2009 from (2009)
  11. Constantino-González M.A., Suthers D., Escamilla de los Santos J.: Coaching web-based collaborative learning based on problem solution differences and participation. Int. J. Artif. Intell. Educ. 13(2–4), 263–299 (2003)Google Scholar
  12. Del Solato T., du Boulay B.: Formalization and implementation of motivational tactics in tutoring systems. Int. J. Artif. Intell. Educ. 6(4), 337–378 (1995)Google Scholar
  13. Dillenbourg P., Baker M., Blaye A., O’Malley C.: The evolution of research on collaborative learning. In: Spada, H., Reimann, P. (eds) Learning in Humans and Machine: Towards an Interdisciplinary Learning Science, pp. 189–211. Elsevier, Oxford (1995)Google Scholar
  14. Dillenbourg P., Hong F.: The mechanics of CSCL macro scripts. Int. J. Comput. Support. Collab. Learn. 3(1), 5–23 (2008)CrossRefGoogle Scholar
  15. Dillenbourg P.: Over-scripting CSCL: the risk of blending collaborative learning with instructional design. In: Kirschner, P.A. (eds) Three Worlds of CSCL: Can we Support CSCL? pp. 61–91, Open Universiteit Nederland, Heerlen (2002)Google Scholar
  16. Diziol, D., Rummel, N., Kahrimanis, G., Guevara, T., Holz, J., Spada, H., Fiotakis, G.: Using contrasting cases to better understand the relationship between students’ interactions and their learning outcome. In: Kanselaar, G., Jonker, V., Kirschner, P.A., Prins, F. (eds.) Proceedings of the Eighth International Conference of the Learning Sciences, pp. 348–349. International Society of the Learning Sciences, Inc., Utrecht (2008)Google Scholar
  17. Fantuzzo J.W., Riggio R.E., Connelly S., Dimeff L.A.: Effects of reciprocal peer tutoring on academic achievement and psychological adjustment: a component analysis. J. Educ. Psychol. 81(2), 173–177 (1989)CrossRefGoogle Scholar
  18. Fischer, F., Kollar, I., Mandl, H., Haake, J.M. (eds.): Scripting Computer-Supported Collaborative Learning—Cognitive, Computational, and Educational Perspectives. (Springer, New York 2007)Google Scholar
  19. Fuchs L., Fuchs D., Hamlett C.L., Phillips N.B., Karns K., Dutka S.: Enhancing students’ helping behavior during peer-mediated instruction with conceptual mathematical explanations. Elem. Sch. J. 97(3), 223–250 (1997)CrossRefGoogle Scholar
  20. Genesereth M.R.: An agent-based framework for interoperability. In: Bradshaw, J.M. (eds) Software Agents, pp. 317–345. AAAI Press/MIT Press, Menlo Park (1997)Google Scholar
  21. Große C.S., Renkl A.: Finding and fixing errors in worked examples: can this foster learning outcomes’?. Learn. Instr. 17, 612–634 (2007)CrossRefGoogle Scholar
  22. Gweon, G., Rose, C., Carey, R., Zaiss, Z.: Providing support for adaptive scripting in an on-line collaborative learning environment. In: Grinter, R., Rodden, T., Aoki, P., Cutrell, E., Jeffries, R., Olson, G. (eds.) Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems, pp. 251–260. ACM Press, New Jersey (2006)Google Scholar
  23. Hmelo-Silver C.E.: Problem-based learning: what and how do students learn?. Educ. Psychol. Rev. 16(3), 235–266 (2004)CrossRefGoogle Scholar
  24. Hoppe, H.U.: The use of multiple student modeling to parameterize group learning. In: Greer, J. (ed.) Proceedings of the 7th International Conference on Artificial Intelligence in Education, pp. 234–241. Association for the Advancement of Computing in Education (AACE), Charlottesville, VA (1995)Google Scholar
  25. Hoppe, H.U., Gaßner, K.: Integrating collaborative concept mapping tools with group memory and retrieval functions. In: Stahl, G. (ed.) Proceedings of CSCL 2002, pp. 115–124. Lawrence Erlbaum, Boulder, CO (2002)Google Scholar
  26. Israel J., Aiken R.: Supporting collaborative learning with an intelligent web-based system. Int. J. Artif. Intell. Educ. 17(1), 3–40 (2007)Google Scholar
  27. Koedinger K.R., Aleven V.: Exploring the assistance dilemma in experiments with Cognitive Tutors. Educ. Psychol. Rev. 19(3), 239–264 (2007)CrossRefGoogle Scholar
  28. Koedinger K., Anderson J., Hadley W., Mark M.: Intelligent tutoring goes to school in the big city. Int. J. Artif. Intell. Educ. 8, 30–43 (1997)Google Scholar
  29. Koedinger K., Corbett A.T.: Cognitive tutors: technology bringing learning science to the classroom. In: Sawyer, R.K. (eds) The Cambridge Handbook of the Learning Sciences, pp. 61–78. Cambridge University Press, New York (2006)Google Scholar
  30. Krueger C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)CrossRefMathSciNetGoogle Scholar
  31. Kumar, R., Rosé, C.P., Wang, Y.C., Joshi, M., Robinson, A.: Tutorial dialogue as adaptive collaborative learning support. In: Luckin, R., Koedinger, K.R., Greer, J. (eds.) Proceedings of the 13th International Conference on Artificial Intelligence in Education, pp. 383–390. IOS Press, Amsterdam (2007)Google Scholar
  32. McManus M.M., Aiken R.M.: Teaching collaborative skills with a group leader tutor. Educ. Inf. Technol. 1, 75–96 (1996)CrossRefGoogle Scholar
  33. McNamara D.S., O’Reilly T., Rowe M., Boonthum C., Levinstein I.B.: iSTART: a web-based tutor that teaches self-explanation and metacognitive reading strategies. In: McNamara, D.S. (eds) Reading Comprehension Strategies: Theories, Interventions, and Technologies, pp. 397–421. Erlbaum, Mahwah (2007)Google Scholar
  34. Medway F.J., Baron R.M.: Locus of control and tutor’s instructional style. Contemp. Educ. Psychol. 2, 298–310 (1997)CrossRefGoogle Scholar
  35. Meier A., Spada H., Rummel N.: A rating scheme for assessing the quality of computer-supported collaboration processes. Int. J. Comput. Supp. Collab. Learn. 2, 63–86 (2007)CrossRefGoogle Scholar
  36. Mostow J., Aist G. : Evaluating tutors that listen: an overview of Project LISTEN. In: Forbus, K., Feltovich, P. (eds) Smart Machines in Education, pp. 169–234. MIT/AAAI Press, Menlo Park (2001)Google Scholar
  37. Mühlenbrock M., Tewissen F., Hoppe H.U.: A framework system for intelligent support in open distributed learning environments. Int. J. Artif. Intell. Educ. 9, 256–274 (1998)Google Scholar
  38. Mühlenbrock M.: Shared workspaces: analyzing user activity and group interaction. In: Hoppe, H.U., Ikeda, M., Ogata, H. (eds) New Technologies for Collaborative Learning, Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  39. Pfister, H.R., Mühlpfordt, M.: Supporting discourse in a synchronous learning environment: The learning protocol approach. In: Stahl, G. (ed.) Proceedings of CSCL 2002, pp. 581–589. Erlbaum, Hillsdale, NJ (2002)Google Scholar
  40. Pinkwart, N.: A plug-in architecture for graph based collaborative modeling systems. In: Hoppe, U., Verdejo, F., Kay, J. (eds.), Proceedings of the 11th International Conference on Artificial Intelligence in Education, pp. 535–536. IOS Press, Amsterdam (2003)Google Scholar
  41. PSLC: Welcome: Pittsburgh Science of Learning Center. Retrieved 1 Oct 2009 from (2009)
  42. Ritter, S., Blessing, S.B., Hadley, W.S.: SBIR phase I final report 2002. Department of Education RFP ED: 84-305S (2002)Google Scholar
  43. Ritter S., Koedinger K.R.: An architecture for plug-in tutor agents. Int. J. Artif. Intell. Educ. 7(3/4), 315–347 (1996)Google Scholar
  44. Rosatelli M., Self J.: A collaborative case study system for distance learning’. Int. J. Artif. Intell. Educ. 14(1), 97–125 (2004)Google Scholar
  45. Roscoe R.D., Chi M.: Understanding tutor learning: knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Rev. Educ. Res. 77(4), 534–574 (2007a)CrossRefGoogle Scholar
  46. Roscoe R.D., Chi M.: Tutor learning: the role of instructional explaining and responding to questions. Instr. Sci. 36(4), 321–350 (2007b)CrossRefGoogle Scholar
  47. Rummel N., Spada H.: Learning to collaborate: an instructional approach to promoting collaborative problem-solving in computer-mediated settings. J. Learn. Sci. 14(2), 201–241 (2005)CrossRefGoogle Scholar
  48. Saab N., van Joolingen W.R., van Hout-Wolters B.H.A.M.: Supporting communication in a collaborative discovery learning environment: the effect of instruction. Instr. Sci. 35(1), 73–98 (2007)CrossRefGoogle Scholar
  49. Strijbos J.W., Martens R.L., Jochems W.M.G.: Designing for interaction: six steps to designing computer-supported group-based learning. Comput. Educ. 42(4), 403–424 (2004)CrossRefGoogle Scholar
  50. Slavin R.E.: Research on cooperative learning and achievement: What we know, what we need to know. Contemp. Educ. Psychol. 21(1), 43–69 (1996)CrossRefGoogle Scholar
  51. Soller A., Martinez A., Jermann P., Mühlenbrock M.: From mirroring to guiding: a review of state of the art technology for supporting collaborative learning. Int. J. Artif. Intell. Educ. 15(4), 261–290 (2005)Google Scholar
  52. Soller A.: Computational modeling and analysis of knowledge sharing in collaborative distance learning. User Model. User Adapt. Interact. J. Pers. Res. 14(4), 351–381 (2004)CrossRefGoogle Scholar
  53. Suebnukarn, S., Haddawy, P.: A collaborative intelligent tutoring system for medical problem-based learning. In: Nuno, N., Charles, R. (eds.) Proceedings of the 9th International Conference on Intelligent User Interfaces, pp. 14–21. ACM Press, New York, NY (2004)Google Scholar
  54. Suthers, D.: Architectures for computer supported collaborative learning. In: Okamoto, T., Hartley, R., Klus, Kinshuk, J.P. (eds.) Proceedings of the IEEE International Conference on Advanced Learning Technology: Issues, Achievements and Challenges, pp. 25–28. IEEE Computer Society, Los Alamitos, CA (2001)Google Scholar
  55. Tedesco P.: MArCo: building an artificial conflict mediator to support group planning interactions. Int. J. Artif. Intell. Educ. 13(1), 117–155 (2003)Google Scholar
  56. Tsovaltzi, D., Rummel, N., Pinkwart, N., Scheuer, O., Harrer, A., Braun, I. McLaren, B.M.: CoChemEx: supporting conceptual chemistry learning via computer-mediated collaboration scripts. In: Dillenbourg, P., Specht, M. (eds.) Proceedings of the Third European Conference on Technology Enhanced Learning, pp. 437–448. Springer, Berlin (2008)Google Scholar
  57. VanLehn K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227–265 (2006)Google Scholar
  58. VanLehn, K., Koedinger, K. R., Skogsholm, A., Nwaigwe, A., Hausmann, R. G. M., Weinstein, A., Billings, B.: What’s in a step? Toward general, abstract representations of tutoring system log data. In: Conati, C., McCoy, K.F., Paliouras, G. (eds.) User Modeling 2007, 11th International Conference, pp. 455–459. Springer (2007)Google Scholar
  59. Vieira, A. C., Teixeira, L., Timóteo, A., Tedesco, P., Barros, F. A.: Analyzing on-line collaborative dialogues: The OXEnTCHÊ-Chat. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) Proceedings of the 7th International Conference on Intelligent Tutoring Systems, pp. 315–324. Springer-Verlag, Germany (2004)Google Scholar
  60. Vizcaíno A., Contreras J., Favela J., Prieto M.: An adaptive collaborative environment to develop good habits in programming. In: Gauthier, G., Frasson, C., VanLehn, K. (eds) 5th International Conference on Intelligent Tutoring Systems, ITS’2000, pp. 262–271. Springer-Verlag, Berlin (2000)Google Scholar
  61. Walker, E., Rummel, N., Koedinger, K.: To tutor the tutor: adaptive domain support for peer tutoring. In: Woolf, B., Aimeur, E. Nkambou, R., Lajoie, S. (eds.) Proceedings of the 9th International Conference on Intelligent Tutoring Systems, pp. 626–635. Springer, Berlin (2008)Google Scholar
  62. Walker, E., Rummel, N., McLaren, B., Koedinger, K.: The student becomes the master: Integrating peer tutoring with cognitive tutoring. In: Chinn, C.A., Erkens, G., Puntambekar, S. (eds.) Proceedings of the Computer Supported Collaborative Learning (CSCL) Conference 2007, pp. 750–752. International Society of the Learning Sciences, New Brunswick (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Erin Walker
    • 1
    Email author
  • Nikol Rummel
    • 2
  • Kenneth R. Koedinger
    • 1
  1. 1.Human-Computer Interaction InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Institute of PsychologyUniversity of FreiburgFreiburgGermany

Personalised recommendations