Advertisement

User Modeling and User-Adapted Interaction

, Volume 19, Issue 1–2, pp 133–166 | Cite as

Case-studies on exploiting explicit customer requirements in recommender systems

  • Markus Zanker
  • Markus Jessenitschnig
Original Paper

Abstract

Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results.

Keywords

Hybrid recommender systems Comparative evaluation Electronic commerce Cold-start recommendation problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius G., Tuzhilin A.: Using data mining methods to build customer profiles. Computer 34(2), 74–82 (2001)CrossRefGoogle Scholar
  2. Adomavicius G., Tuzhilin A.: Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. Adomavicius G., Sankaranarayanan R., Sen S., Tuzhilin A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRefGoogle Scholar
  4. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Conference on Management of Data, pp. 207–216. Washington, DC, USA (1993)Google Scholar
  5. Ardissono L., Goy A.: Tailoring the interaction with users inweb stores. User Model. User-Adapt. Interact. 10(4), 251–303 (2000)CrossRefGoogle Scholar
  6. Balabanovic, M.: An adaptive web page recommendation service. In: 1st International Conference on Autonomous Agents, pp. 378–385. Marina del Rey, CA, USA (1997)Google Scholar
  7. Balabanovic M., Shoham Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  8. Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In: 21st International Conference on Machine Learning (ICML), pp. 9–16. ACM Press, Banff, Alberta, Canada (2004)Google Scholar
  9. Berkovsky S., Kuflik T., Ricci F.: Mediation of user models for enhanced personalization in recommender systems. User Model. User-Adapt. Interact. 18(3), 245–286 (2008)CrossRefGoogle Scholar
  10. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Madison, Wisonsin, USA (1998)Google Scholar
  11. Burke R.: Knowledge-based recommender systems. Encyclopedia Libr. Inf. Syst. 69(2), 180–200 (2000a)Google Scholar
  12. Burke, R.: The wasabi personal shopper: a case-based recommender system. In: 11th Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 844–849. AAAI, Trento, IT (2000b)Google Scholar
  13. Burke R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  14. Chu-Carrol, J., Carberry, S.: A plan-based model for response generation in collaborative task-oriented dialogues. In: 12th National Conference on Artificial Intelligence (AAAI), pp. 799–805. Seattle, WA, USA (1994)Google Scholar
  15. Demiriz A.: Enhancing product recommender systems on sparse binary data. Data Min. Knowl. Discov. 9(2), 147–170 (2004)CrossRefMathSciNetGoogle Scholar
  16. Elzer, S., Chu-Carroll, J., Carberry, S.: Recognizing and utilizing user preferences in collaborative consultation dialogues. In: 4th International Conference on User Modeling (UM), pp. 19–24. Hyannis, MA, USA (1994)Google Scholar
  17. Felfernig A., Friedrich G., Jannach D., Zanker M.: An integrated environment for the development of knowledge-based recommender applications. Int. J. Electron. Commerce 11(2), 11–34 (2006)CrossRefGoogle Scholar
  18. Felfernig, A., Kiener, A.: Knowledge-based interactive selling of financial services using FSAdvisor. In: 17th Innovative Applications of Artificial Intelligence Conference (IAAI), pp. 1475–1482. AAAI Press, Pittsburgh, PA, USA (2005)Google Scholar
  19. Fogg B.J.: Persuasive technologies. Commun. ACM 42(5), 27–29 (1999)CrossRefGoogle Scholar
  20. Frakes, W.B., Baeza-Yates, R. (eds.): Information Retrieval, Data Structure and Algorithms. Prentice Hall, Englewood Cliffs, NJ, USA (1992)Google Scholar
  21. Goldberg K., Roeder T. Gupta D., Perkins C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retr. 4(2), 133–151 (2001)MATHCrossRefGoogle Scholar
  22. Goy A., Ardissono L., Petrone G.: Personalization in e-commerce applications. In: Brusilovsky, P., Kobsa, A., Nejdl, W.(eds) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 485–520. Springer, Heidelberg, Germany (2007)Google Scholar
  23. Gretzel U., Fesenmaier D.R.: Persuasion in recommender systems. Int. J. Electron. Commerce 11(2), 81–100 (2006)CrossRefGoogle Scholar
  24. Harvey, T., Carberry, S., Decker, K.: Tailored responses for decision support. In: 10th International Conference on User Modeling (UM), pp. 164–168. Edinburgh, Scotland (2005)Google Scholar
  25. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic frame-work for performing collaborative filtering. In: 22nd International ACM Conference on Research and Development in Information Retrieval (SIGIR), pp. 230–237. Berkeley, CA, USA (1999)Google Scholar
  26. Herlocker J.L., Konstan J.A., Terveen L.G., Riedl J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  27. Jannach, D.: Advisor suite - a knowledge-based sales advisory system. In: Lopez de Mantaras L.S. (ed.): 16th European Conference on Artificial Intelligence - Prestigious Applications of AI (PAIS), pp. 720–724. IOS Press (2004)Google Scholar
  28. Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: IEEE Intelligent Systems Conference (IS), pp. 355–360. IEEE Press, Westminster, UK (2006a)Google Scholar
  29. Jannach, D.: Techniques for fast query relaxation in content-based recommender systems. In: 29th German Conference on Artificial Intelligence, pp. 49–63. Springer, Bremen, Germany. (2006b)Google Scholar
  30. Jannach, D., Kreutler, G.: A knowledge-based framework for the rapid development of conversational recommenders. In: 5th International Conference on Web Information Systems Engineering (WISE), vol. LNCS 3306, pp. 390–402. Springer, Brisbane, Australia (2004)Google Scholar
  31. Jannach, D., Kreutler, G.: Personalized user preference elicitation for e services. In: IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE), pp. 604–611. Hong Kong (2005)Google Scholar
  32. Konstan J.A., Miller B.N., Maltz J., Herlocker D., Gordon L.R., Riedl J.: GroupLens: applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  33. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: the automated travel assistant. In: 6th International Conference on User Modeling (UM), pp. 67–78. Chia Laguna, Sardinia, Italy (1997)Google Scholar
  34. Linden G., Smith B., York J.: Amazon.com recommendations – item-to-item collaborative filtering. IEEE Intern. Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  35. McGinty L., Smyth B.: Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems. Int. J. Electron. Commerce 11(2), 35–57 (2006)CrossRefGoogle Scholar
  36. Mirzadeh, N., Ricci, F., Bansal, M.: Supporting user query relaxation in a recommender system. In: 5th International Conference on E-Commerce and Web Technologies (EC-Web), pp. 31–40. Springer, Zaragoza, Spain (2004)Google Scholar
  37. Mobasher B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W.(eds) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 90–135. Springer, Heidelberg, Germany (2007)Google Scholar
  38. Mobasher B., Cooley J., Srivastava R.: Automatic personalization based on Web usage mining. Commun. ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  39. Pazzani M.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5/6), 393–408 (1999)CrossRefGoogle Scholar
  40. Pazzani M.J., Billsus D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W.(eds) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 325–341. Springer, Heidelberg, Germany (2007)Google Scholar
  41. Pierrakos D., Paliouras G., Papatheodorou C., Spyropoulos C.D.: Web usage mining as a tool for personalization: a survey. User Model. User-Adapt. Interact. 13(4), 311–372 (2003)CrossRefGoogle Scholar
  42. Pu P., Faltings B.: Decision tradeoff using example-critiquing and constraint programming. Constraints 9, 289–310 (2004)CrossRefGoogle Scholar
  43. Rafter R., Smyth B.: Conversational collaborative recommendation an experimental analysis. Artif. Intell. Rev. 24(3–4), 301–318 (2005)CrossRefGoogle Scholar
  44. Reilly J., McCarthy K., McGinty L., Smyth B.: Incremental critiquing. Knowl-Based Syst. 18, 143–151 (2005)CrossRefGoogle Scholar
  45. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: 8th ACM Conference on Electronic Commerce, pp. 114–123. ACM Press, San Diego, California, USA (2007)Google Scholar
  46. Resnick, P., Iacovou, N., Suchak, N., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Computer Supported Collaborative Work (CSCW), pp. 175–186. Chapel Hill, NC, USA (1994)Google Scholar
  47. Ricci F.: Travel recommender systems. IEEE Intell. Syst. 17(6), 55–57 (2002)MathSciNetGoogle Scholar
  48. Ricci F., Werthner H.: Case base querying for travel planning recommendation. Inf. Technol. Tourism 3, 215–266 (2002)Google Scholar
  49. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product recommendation with interactive query management and twofold similarity. In: 5th International Conference on Case-Based Reasoning, pp. 479–493. Springer, Trondheim, Norway (2003)Google Scholar
  50. Riedl J., Konstan J., Vrooman E.: Word of Mouse: The Marketing Power of Collaborative Filtering. Warner Books, New York (2002)Google Scholar
  51. Sacco G.M.: Dynamic taxonomies: a model for large information bases. IEEE Trans. Knowl. Data Eng. 12(3), 468–479 (2000)CrossRefGoogle Scholar
  52. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for E-Commerce. In: ACM Conference on E-Commerce (EC), pp. 158–167. Minneapolis, MN, USA (2000)Google Scholar
  53. Sarwar, B., Karypis, G., Konstan, J. Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International World Wide Web Conference, pp. 285–295. Hong Kong (2001)Google Scholar
  54. Schafer J.B., Frankowski D., Sen J.H.S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W.(eds) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 291–324. Springer, Heidelberg, Germany (2007)Google Scholar
  55. Schein, A.I., Popescul, A., Pennock, D.M., Ungar, L.H.: Methods and metrics for cold-start recommendations. In: 25th International Conference on Research and Development in Information Retrieval (SIGIR), pp. 253–260. ACM, Tampere, Finland (2002)Google Scholar
  56. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: International Conference on Human Factors in Computing Systems (CHI), pp. 210–217. Denver, CO, USA (1995)Google Scholar
  57. Shimazu, H.: Expert clerk: navigating shoppers’ buying process with the combination of asking and proposing. In: 17th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1443–1448. Seattle, WA, USA (2001)Google Scholar
  58. Smyth B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W.(eds) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 342–376. Springer, Heidelberg, Germany (2007)Google Scholar
  59. Smyth B., Cotter P.: Personalized electronic program guides for digital TV. AI Magazine 22(2), 89–98 (2001)Google Scholar
  60. Torrens M., Faltings B., Pu P.: SmartClients: constraint satisfaction as a paradigm for scaleable intelligent information systems. Constraints 7, 49–69 (2002)MATHCrossRefGoogle Scholar
  61. Viappiani P., Faltings B., Pu P.: Preference-based search using example-critiquing with suggestions. Artif Intell Res 27, 465–503 (2006)Google Scholar
  62. von Winterfeldt D., Edwards W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge, UK (1986)Google Scholar
  63. Wasfi, A.M.A.: Collecting user access patterns for building user profiles and collaborative filtering. In: 4th International Conference on Intelligent User Interfaces (IUI), pp. 57–64. ACM Press, Los Angeles, CA, USA (1999)Google Scholar
  64. Witten I.H., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  65. Zanker, M., Bricman, M., Gordea, S., Jannach, D., Jessenitschnig, M.: Persuasive online-selling in quality & taste domains. In: 7th International Conference on Electronic Commerce and Web Technologies (EC-Web), pp. 51–60. Springer, Krakow, Poland (2006)Google Scholar
  66. Zanker M., Jessenitschnig M., Jannach D., Gordea S.: Comparing recommendation strategies in a commercial context. IEEE Intell. Syst. 22(5/6), 69–73 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.University KlagenfurtKlagenfurtAustria

Personalised recommendations