User Modeling and User-Adapted Interaction

, Volume 15, Issue 5, pp 425–457 | Cite as

Personal Content Recommender Based on a Hierarchical User Model for the Selection of TV Programmes

  • Matevz Pogacnik
  • Jurij Tasic
  • Marko Meza
  • Andrej Kosir


In this paper we present our approach to user modeling for a personalized selection of multimedia content tested on a corpus of TV programmes. The idea of this approach is to classify content (TV programmes) based on the calculation of similarities between the description of content and the user model for each description attribute. Calculated similarities are then combined into a classification decision using the Support Vector Machines. The basis for the calculation of similarities is a hierarchical structure of the user model, overlaid upon a taxonomy of TV programme genres. Preliminary results show that it works well with a varying quality of content descriptions including incomplete genre classification and arbitrary number of description attributes. The evaluation of the system performance was based on content described using the TV-Anytime standard, but the approach can be adapted for search of other types of content with multi-attribute descriptions.


hierarchical user model multimedia support vector machines TV programmes updating of the user model user modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahanger, G., Little, T. 2001Data semantics for improving retrieval performance of digital news video systemsIEEE Transactions on knowledge and data engineering13352360CrossRefGoogle Scholar
  2. Ardissono L., Gena, C., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A. and Negro, B.: 2004, User Modeling and Recommendation Techniques for Personalized Electronic Program Guides. Personalized Digital Television. Targeting Programs to Individual Viewers. Kluwer Academic Publishers, Human-Computer Interaction Series, Vol. 6, pp. 3–26.Google Scholar
  3. Balabanovic, M., Shoham, Y. 1997Combining content-based and collaborative recommendation.Communications of the ACM406672CrossRefGoogle Scholar
  4. Baudisch, P.: 1998, Recommending TV programs How far can we get at zero user effort. Recommender Systems: Papers from the 1998 AAAI Workshop, Technical Report WS-98-08, Madison Wisconsin, pp. 16–18.Google Scholar
  5. Bezerra, B., Carvalho, F., Ramalho, G. and Zucker, J. D. Speeding up Recommender Systems with Meta-prototypes. Lecture Notes in Computer Science, Advances in Artificial Intelligence, 16th Brazilian Symposium on Artificial Intelligence – SBIA 2002, Brazil, Springer-Verlag GmbH, pp. 227–236, November 2002.Google Scholar
  6. Billsus, D. and Pazzani, M. J.: 1999, A hybrid user model for news story classification. In: Proceedings of the Seventh International Conference on User Modeling, Banff, Canada, pp. 99–108.Google Scholar
  7. Breese, J. S., Heckerman, D. and Kadie, C.: 1998, Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the fourteenth conference on uncertainty in artificial intelligence, Madison, USA, Morgan Kaufmann Publisher, pp. 43–52.Google Scholar
  8. Burke, R. 2002Hybrid recommender systems survey and experimentsUser Modeling and User Adapted Interaction12331370MATHGoogle Scholar
  9. Chang C., Lin C. (2003) Libsvm: a library for support vector machines. ELECTRONIC VERSION ( Scholar
  10. Draper, S., Earnshaw, N., Montie, E., Parnall, S. et al.: 1999, TV-Anytime. Paper presented at the opening of the IBC99 conference.Google Scholar
  11. Greenspan R. Remote Power – Can PVRs kill TV spots? CyberAtlas, The newsletter for Web marketers, Ver 5.47, 22 September 2003, Scholar
  12. Gudivada, N.V., Raghavan, V.V., Grosky, I.W., Kasanatogu, R. 1997Information retrieval on the world wide webIEEE Internet Computing15868CrossRefGoogle Scholar
  13. Hand, D.J., Mannilla, H., Smyth, P. 2001Principles of data miningThe MIT PressCambridge, Massachusetts, USA449485Google Scholar
  14. Internet movie database web site (INDB), 2003, Scholar
  15. Korte, B., Vygen, J. 1991Combinatorial OptimizationSpringer-VerlagBerlinGoogle Scholar
  16. Kobsa, A. 2001Generic user modeling systemsUser Modeling and user adapted interaction114963MATHGoogle Scholar
  17. Kurapati, K. and Gutta, S.: 2002, TV personalization through stereotypes. In Proceedings of the AH2002 Workshop on personalisation in future TV, Malaga, Spain.Google Scholar
  18. Kurapati, K., Gutta, S., Schaffer, D., Martino, J. and Zimmerman J.: 2001, A multi agent TV recommender. In: Proceedings of the UM 2001 Workshop on Personalization in Future TV, Sonthofen, Germany.Google Scholar
  19. Lee, H., Lee, H., Nam, J. and Bae, B.: 2002, Personalized contents guide and browsing based on user preference. In: Proceedings of the AH2002 Workshop on personalisation in future TV, Malaga, Spain.Google Scholar
  20. Masthoff, J. 2004Group modeling: Selecting a sequence of television items to suit a group of viewersUser Modeling and user adapted interaction143785Google Scholar
  21. Manjunath, B. S., Salembier, P., Sikore, T. 2002Introduction to MPEG–7, multimedia Description InterfaceJohn Wiley & sons Ltd.England163175Google Scholar
  22. Michalski, R. S., Bratko, I., Kubat, M. 1988Machine Learning and Data Mining-Methods and ApplicationsJohn Wiley and SonsChichester, EnglandGoogle Scholar
  23. Miller, G. A., Beckwith, R., Fellbaum C., Gross, D. and Miller K. J.: 1933, Introduction to WordNet: An online lexical database. Technical Report CSL 43, Cognitive Science Laboratory, Princeton University.Google Scholar
  24. myTV project IST-1999-11702. Personalised services for digital television – Final report, 2000, ELECTRONIC VERSION ( Scholar
  25. O’Sullivan, D., Smyth, B., Wilson, D. C., McDonald, K., Smeaton, A. 2004Improving the quality of the personalized electronic program guidenUser Modeling and User Adapted Interaction14536Google Scholar
  26. Porter, M. F. 1980An algorithm for suffix strippingProgram, Automated Library and Information Systems14130137Google Scholar
  27. Salton G., McGill M. (1983) An Introduction to Modern Information Retrieval. McGraw-Hill.Google Scholar
  28. Share it! project IST-2000-28703. Public project description, Deliverable No.0. 2001, ELECTRONIC VERSION ( Scholar
  29. Smyth, B. and Cotter, P.: 1999, Surfing the digital wave: Generating personalised TV listings using collaborative case-based recommendation. In: Proceedings of 3rd International Conference on Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 1650, pp. 561–571.Google Scholar
  30. Stark, H., Woods, , J.W.,  2002Probability and Random Processes with Applications to Signal ProcessingPrentice HallNew JerseyGoogle Scholar
  31. O’Sullivan, D., Wilson, D. and Smyth, B.: 2002, Improving case-based recommendation: A Collaborative Filtering Approach. In: it Proceedings of the 6th European conference on case-based reasoning, ECCBR 2002, Springer Verlag, pp. 278–291.Google Scholar
  32. TiVo: The official TiVo web site., 2003.Google Scholar
  33. TVAnytime: Specification series: S-3 metadata, SP0003 v1.3, part A, 2002, ELECTRONIC VERSION ( Scholar
  34. TVAnytime: Requirements series: R-1 Business models, RQ001v20, final release, August 2003 ELECTRONIC VERSION ( Scholar
  35. Uchyigit, G. and Clark, K.: 2002, An agent based electronic program guide. In: Proceedings of the AH2002 Workshop on personalisation in future TV, Malaga, Spain.Google Scholar
  36. Zimmerman, J., Kurapati, K., Buczak, A., Schaffer, D., Gutta, S. and Martino, J.: 2004, TV Personalization system. Design of a TV Show Recommender Engine and Interface. Personalized Digital Television. Targeting Programs to Individual Viewers. Kluwer Academic Publishers, Human-Computer Interaction Series, Vol. 6.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Matevz Pogacnik
    • 1
  • Jurij Tasic
    • 1
  • Marko Meza
    • 1
  • Andrej Kosir
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations