User Modeling and User-Adapted Interaction

, Volume 15, Issue 3–4, pp 235–273 | Cite as

Exploring Issues of User Model Transparency and Proactive Behaviour in an Office Environment Control System

  • Keith Cheverst
  • Hee Eon Byun
  • Dan Fitton
  • Corina Sas
  • Chris Kray
  • Nicolas Villar
Article

Abstract

It is important that systems that exhibit proactive behaviour do so in a way that does not surprise or frustrate the user. Consequently, it is desirable for such systems to be both personalised and designed in such a way as to enable the user to scrutinise her user model (part of which should hold the rules describing the behaviour of the system). This article describes on-going work to investigate the design of a prototype system that can learn a given user’s behaviour in an office environment in order to use the inferred rules to populate a user model and support appropriate proactive behaviour (e.g. turning on the user’s fan under appropriate conditions). We explore the tension between user control and proactive services and consider issues related to the design of appropriate transparency with a view to supporting user comprehensibility of system behaviour. To this end, our system enables the user to scrutinise and possibly over-ride the ‘IF-THEN’ rules held in her user model. The system infers these rules from the context history (effectively a data set generated using a variety of sensors) associated with the user by using a fuzzy-decision-tree-based algorithm that can provide a confidence level for each rule in the user model. The evolution of the system has been guided by feedback from a number of real-life users in a university department. A questionnaire study has yielded supplementary results concerning the extent to which the approach taken meets users’ expectations and requirements.

Keywords

context history intelligent environment inference machine learning proactive behaviour prototype deployment scrutability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abowd, G.D., Mynatt, E.D. 2000Charting past, present and future research in ubiquitous computingACM Transactions on Computer-Human Interaction, Special Issue on HCI in the New Millenium72958Google Scholar
  2. 2.
    Arroyo, E., Selker, T., Stouffs, A. 2002Interruptions as multimodal outputs: Which are the less disruptive?PittsburghPennsylvania479482Proceedings of the 4th IEEE International Conference on Multimodal Interfaces (ICMI′02)Google Scholar
  3. 3.
    Barkhuus, L., Dey, A.K. 2003Is context-aware computing taking control away from the user? Three levels of interactivity examinedSpringer-VerlagSeattle, USA159166Proceedings of UbiComp 2003: Ubiquitous ComputingGoogle Scholar
  4. 4.
    Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S. 2000EasyLiving: technologies for intelligent environmentsSpringer-VerlagBristol, UK1229Proceedings of the 2nd International Symposium on Handheld and Ubiquitous Computing (HUC 2000)Google Scholar
  5. 5.
    Byun, H.E., Cheverst, K. 2003Supporting proactive “Intelligent” behaviour: the problem of uncertaintyJohnstownPA1725Proceedings of the UM03 Workshop on User Modeling for Ubiquitous ComputingGoogle Scholar
  6. 6.
    Byun, H.E., Cheverst, K. 2004Utilising context history to provide dynamic adaptationsJournal of Applied Artificial Intelligence18533548CrossRefGoogle Scholar
  7. 7.
    Cheverst, K., Davies, N., Mitchell, K., Efstratiou, C. 2001Using context as a crystal ball: rewards and pitfallsPersonal Technologies3811Google Scholar
  8. 8.
    Cheverst, K., Dix, A., Fitton, D., Rouncefield, M. 2003“Out To Lunch”: exploring the sharing of personal context through office door displaysIEEE Computer Society PressBrisbane7483Proceedings of the International Conference of the Australian Computer-Human Interaction Special Interest Group (OzCHI’03)Google Scholar
  9. 9.
    Coen, M. 1998Design principles for intelligent environmentsAAAI PressMadison WI37443Proceedings of the Tenth Conference on Innovative Applications of Artificial IntelligenceGoogle Scholar
  10. 10.
    Cohen, S. 1980After-effects of stress on human performance and social behavior: A review of research and theoryPsychological Bulletin8882108CrossRefPubMedGoogle Scholar
  11. 11.
    Dey, A.K., Abowd, G.D. 2000The context toolkit: aiding the development of context-enabled applications. Proceedings of the Workshop on Software Engineering for Wearable and Pervasive ComputingLimerickIrelandGoogle Scholar
  12. 12.
    Guetova, M., Holldobler, S., Storr, H. 2002Incremental fuzzy decision treesAachenGermany6781Proceedings of the 25th German Conference on Artificial Intelligence (KI2002)Google Scholar
  13. 13.
    Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.W. 2001Smart-its friends: a technique for users to easily establish connections between smart artefactsAtlantaUSA116122Proceedings of UbiComp 2001: Ubiquitous ComputingGoogle Scholar
  14. 14.
    Horvitz, E. 1999Principles of mixed-initiative user interfacesACM PressNew York159166Proceedings of the CHI 1999 Conference on Human Factors in Computing SystemsGoogle Scholar
  15. 15.
    Intille, S.S.: 2002, Designing a home of the future. IEEE Pervasive Computing April–June, 80–86.Google Scholar
  16. 16.
    Intille, S.S., Larson, K. 2003Designing and evaluating supportive technology for homesIEEE PressKobe, JapanProceedings of the IEEE/ASME International Conference on Advanced Intelligent MechatronicsGoogle Scholar
  17. 17.
    Jameson, A., Baldes, S., Bauer, M., Kroner, A. 2004Resolving the tension between invisibility and transparencyGallipoliItaly2933Proceedings of 1st International Workshop on Invisible and Transparent InterfacesGoogle Scholar
  18. 18.
    Janikow, C.Z.: 1996, Exemplar learning in fuzzy decision trees. Proceedings of the Conference on Fuzzy Systems (FUZZIEEE ’96). New Orleans, pp. 1500–1505.Google Scholar
  19. 19.
    Karlgren, J., Hook, K., Lanz, A., Palme, J., Pargman, D. 1994The glass box user model for information filteringHyannisMAProceedings of the 4th International Conference on User Modeling (UM’94)Google Scholar
  20. 20.
    Kay, J., Kummerfeld, R.J., Lauder, P. 2003Managing private user models and shared personasJohnstownPA111Proceedings of the UM03 Workshop on User Modeling for Ubiquitous ComputingGoogle Scholar
  21. 21.
    Mantyjarvi, J., Seppanen, T. 2002Adapting applications in mobile terminals using fuzzy context informationSpringer-VerlagPisa Italy95107Fourth International Symposium on Human-Computer Interaction with Mobile Devices (MobileHCI 2002)Google Scholar
  22. 22.
    McFarlane, D.C., Latorella, K.A. 2002The scope and importance of human interruption in human-computer interaction designHuman-Computer Interaction17161CrossRefGoogle Scholar
  23. 23.
    Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D. 1994Experience with a learning personal assistantCommunications of the ACM378091CrossRefGoogle Scholar
  24. 24.
    Mozer, M.C., Miller, D. 1998

    Parsing the stream of time: the value of event-based segmentation in a complex real-world control problem

    Giles, C. L.Gori, M. eds. Adaptive Processing of Temporal InformationSpringerBerlin370388
    Google Scholar
  25. 25.
    Pohl. W.: 1996, Learning about the user – user modeling and machine learning. Proceedings of Machine Learning Meets Human-Computer Interaction (ICML’96 Workshop). pp. 29–40.Google Scholar
  26. 26.
    Rodin, J., Langer, E. 1977Long-term effects of a control-relevant intervention with the institutionalized agedJournal of Personality and Social Psychology35897902CrossRefPubMedGoogle Scholar
  27. 27.
    Rubinstein, J.S., Meyer, D.E., Evans, J.E. 2001Executive control of cognitive processes in task switchingJournal of Experimental Psychology: Human Perception and Performance27763796CrossRefGoogle Scholar
  28. 28.
    Salovaara, A., Oulasvirta, A. 2004Six modes of proactive resource management: a user-centric typology for proactive behaviorsACM PressTampere, Finland5760Proceedings of the Third Nordic conference on Human-Computer InteractionGoogle Scholar
  29. 29.
    Shiu, S.C.K., Sun, C.H., Wang, X.Z., Yeung, D.S. 2000Maintaining case-based reasoning system using fuzzy decision treesSpringerTrento, Italy296Advances in Case-Based Reasoning, 5th European Workshop (EWCBR 2000)Google Scholar
  30. 30.
    Speier, C., Valacich, J.S., Vessey, I. 1997The effects of task interruption and information presentation on individual decision makingAssociation for Computing MachineryNew York2136Proceedings of the 18th International Conference on Information SystemsGoogle Scholar
  31. 31.
    Weiser, M. 1991The computer for the 21st centuryScientific American26594104Google Scholar
  32. 32.
    X10 Limited: 2004, What is X10? http://www.smarthome.com/about_x10.htmlGoogle Scholar
  33. 33.
    Zeidler, J., Schlosser, M. 1996Continuous-valued attributes in fuzzy decision treesGranadaSpain395400Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based SystemsGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Keith Cheverst
    • 1
  • Hee Eon Byun
    • 1
  • Dan Fitton
    • 1
  • Corina Sas
    • 1
  • Chris Kray
    • 1
  • Nicolas Villar
    • 1
  1. 1.Department of ComputingLancaster UniversityLancasterUK

Personalised recommendations