Advertisement

International Urology and Nephrology

, Volume 51, Issue 12, pp 2209–2226 | Cite as

The gut microbiota and its relationship with chronic kidney disease

  • Consuelo Plata
  • Cristino Cruz
  • Luz G. Cervantes
  • Victoria RamírezEmail author
Nephrology - Review

Abstract

Chronic kidney disease (CKD) is a worldwide health problem, because it is one of the most common complications of metabolic diseases including obesity and type 2 diabetes. Patients with CKD also develop other comorbidities, such as hypertension, hyperlipidemias, liver and cardiovascular diseases, gastrointestinal problems, and cognitive deterioration, which worsens their health. Therapy includes reducing comorbidities or using replacement therapy, such as peritoneal dialysis, hemodialysis, and organ transplant. Health care systems are searching for alternative treatments for CKD patients to mitigate or retard their progression. One new topic is the study of uremic toxins (UT), which are excessively produced during CKD as products of food metabolism or as a result of the loss of renal function that have a negative impact on the kidneys and other organs. High urea concentrations significantly modify the microbiota in the gut also, cause a decrease in bacterial strains that produce anti-inflammatory and fuel molecules and an increase in bacterial strains that can metabolize urea, but also produce UT, including indoxyl sulfate and p-cresol sulfate. UT activates several cellular processes that induce oxidative environments, inflammation, proliferation, fibrosis development, and apoptosis; these processes mainly occur in the gut, heart, and kidney. The study of the microbiota during CKD allowed for the implementation of therapy schemes to try to reduce the circulating concentrations of UT and reduce the damage. The objective of this review is to show an overview to know the main UT produced in end-stage renal disease patients, and how prebiotics and probiotics intervention acts as a helpful tool in CKD treatment.

Keywords

Chronic kidney disease Microbiota Dysbiosis Probiotics Prebiotics 

Notes

Acknowledgements

This work was supported by Grant no. 155700 from the National Council of Science and Technology (CONACyT) to VR.

Compliance ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379(9811):165–180.  https://doi.org/10.1016/s0140-6736(11)60178-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Internal Med 158:825–830CrossRefGoogle Scholar
  3. 3.
    Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, Schuler R, Finger S, Knorr M, Lagrange J, Brandt M, Waisman A, Kossmann S, Schafer K, Munzel T, Reinhardt C, Wenzel P (2016) Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc.  https://doi.org/10.1161/jaha.116.003698 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao M-h, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V (2015) Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385(9981):1975–1982.  https://doi.org/10.1016/s0140-6736(14)61601-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb EJ, Levey AS, Riella MC, Shlipak MG, Wang H, White CT, Winearls CG (2013) Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3(1):1–150.  https://doi.org/10.1038/kisup.2012.73 CrossRefGoogle Scholar
  6. 6.
    Szummer K, Evans M, Carrero JJ, Alehagen U, Dahlstrom U, Benson L, Lund LH (2017) Comparison of the chronic kidney disease epidemiology collaboration, the modification of diet in renal disease study and the cockcroft-gault equation in patients with heart failure. Open Heart 4(2):e000568.  https://doi.org/10.1136/openhrt-2016-000568 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Evenepoel P, Poesen R, Meijers B (2017) The gut-kidney axis. Pediatr Nephrol 32(11):2005–2014.  https://doi.org/10.1007/s00467-016-3527-x CrossRefPubMedGoogle Scholar
  8. 8.
    Castillo-Rodriguez E, Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Fernandez-Fernandez B, Kanbay M, Tejedor A, Lazaro A, Ruiz-Ortega M, Gonzalez-Parra E, Sanz AB, Ortiz A, Sanchez-Nino MD (2018) Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins (Basel).  https://doi.org/10.3390/toxins10070300 CrossRefGoogle Scholar
  9. 9.
    Cosola C, Rocchetti MT, Cupisti A, Gesualdo L (2018) Microbiota metabolites: pivotal players of cardiovascular damage in chronic kidney disease. Pharmacol Res 130:132–142.  https://doi.org/10.1016/j.phrs.2018.03.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803.  https://doi.org/10.3748/wjg.v21.i29.8787 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T (2017) Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int 92(3):634–645.  https://doi.org/10.1016/j.kint.2017.02.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Cremon C, Barbaro MR, Ventura M, Barbara G (2018) Pre- and probiotic overview. Curr Opin Pharmacol 43:87–92.  https://doi.org/10.1016/j.coph.2018.08.010 CrossRefPubMedGoogle Scholar
  13. 13.
    Afsar B, Vaziri ND, Aslan G, Tarim K, Kanbay M (2016) Gut hormones and gut microbiota: implications for kidney function and hypertension. J Am Soc Hypertens 10(12):954–961.  https://doi.org/10.1016/j.jash.2016.10.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Al Khodor S, Reichert B, Shatat IF (2017) The microbiome and blood pressure: can microbes regulate our blood pressure? Front Pediatrics.  https://doi.org/10.3389/fped.2017.00138 CrossRefGoogle Scholar
  15. 15.
    Aron-Wisnewsky J, Clement K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181.  https://doi.org/10.1038/nrneph.2015.191 CrossRefPubMedGoogle Scholar
  16. 16.
    Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M (2017) Uremic toxin-producing gut microbiota in rats with chronic kidney disease. Nephron 135(1):51–60.  https://doi.org/10.1159/000450619 CrossRefPubMedGoogle Scholar
  17. 17.
    Lee JR, Magruder M, Zhang L, Westblade LF, Satlin MJ, Robertson A, Edusei E, Crawford C, Ling L, Taur Y, Schluter J, Lubetzky M, Dadhania D, Pamer E, Suthanthiran M (2018) Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. Am J Transplant.  https://doi.org/10.1111/ajt.14974 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rosas-Villegas A, Sanchez-Tapia M, Avila-Nava A, Ramirez V, Tovar AR, Torres N (2017) Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients.  https://doi.org/10.3390/nu9040393 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502.  https://doi.org/10.1038/nrgastro.2017.75 CrossRefPubMedGoogle Scholar
  20. 20.
    Cresci GA, Bawden E (2015) Gut microbiome: what we do and don’t know. Nutr Clin Pract 30(6):734–746.  https://doi.org/10.1177/0884533615609899 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Obrenovich MEM (2018) Leaky gut, leaky brain? Microorganisms.  https://doi.org/10.3390/microorganisms6040107 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gaulke CA, Sharpton TJ (2018) The influence of ethnicity and geography on human gut microbiome composition. Nat Med.  https://doi.org/10.1038/s41591-018-0210-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Borges NA, Stenvinkel P, Bergman P, Qureshi AR, Lindholm B, Moraes C, Stockler-Pinto MB, Mafra D (2018) Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-018-9411-1 CrossRefGoogle Scholar
  25. 25.
    Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A, European Uremic Toxin Work G (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23(7):1258–1270.  https://doi.org/10.1681/asn.2011121175 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meijers B, Farre R, Dejongh S, Vicario M, Evenepoel P (2018) Intestinal barrier function in chronic kidney disease. Toxins (Basel).  https://doi.org/10.3390/toxins10070298 CrossRefGoogle Scholar
  27. 27.
    Mydlik M, Derzsiova K (2008) Oxalic acid as a uremic toxin. J Ren Nutr 18(1):33–39.  https://doi.org/10.1053/j.jrn.2007.10.008 CrossRefPubMedGoogle Scholar
  28. 28.
    Cosola C, Rocchetti MT, Sabatino A, Fiaccadori E, Di Iorio BR, Gesualdo L (2018) Microbiota issue in CKD: how promising are gut-targeted approaches? J Nephrol.  https://doi.org/10.1007/s40620-018-0516-0 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Han H, Zhu J, Zhu Z, Ni J, Du R, Dai Y, Chen Y, Wu Z, Lu L, Zhang R (2015) p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J Am Heart Assoc 4(6):e001852.  https://doi.org/10.1161/jaha.115.001852 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81(7):640–650.  https://doi.org/10.1038/ki.2011.445 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Borges NA, Barros AF, Nakao LS, Dolenga CJ, Fouque D, Mafra D (2016) Protein-bound uremic toxins from gut microbiota and inflammatory markers in chronic kidney disease. J Ren Nutr 26(6):396–400.  https://doi.org/10.1053/j.jrn.2016.07.005 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim HY, Yoo TH, Hwang Y, Lee GH, Kim B, Jang J, Yu HT, Kim MC, Cho JY, Lee CJ, Kim HC, Park S, Lee WW (2017) Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci Rep 7(1):3057.  https://doi.org/10.1038/s41598-017-03130-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T (2019) Acute exposure to indoxyl sulfate impairs endothelium-dependent vasorelaxation in rat aorta. Int J Mol Sci.  https://doi.org/10.3390/ijms20020338 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu S, Wang BH, Kompa AR, Lekawanvijit S, Krum H (2012) Antagonists of organic anion transporters 1 and 3 ameliorate adverse cardiac remodelling induced by uremic toxin indoxyl sulfate. Int J Cardiol 158(3):457–458.  https://doi.org/10.1016/j.ijcard.2012.05.022 CrossRefPubMedGoogle Scholar
  35. 35.
    Sato B, Yoshikawa D, Ishii H, Suzuki S, Inoue Y, Takeshita K, Tanaka M, Kumagai S, Matsumoto M, Okumura S, Hayashi M, Matsubara T, Niwa T, Murohara T (2013) Relation of plasma indoxyl sulfate levels and estimated glomerular filtration rate to left ventricular diastolic dysfunction. Am J Cardiol 111(5):712–716.  https://doi.org/10.1016/j.amjcard.2012.11.025 CrossRefPubMedGoogle Scholar
  36. 36.
    Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S (2000) Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 96(6):2284–2291CrossRefGoogle Scholar
  37. 37.
    Hai X, Landeras V, Dobre MA, DeOreo P, Meyer TW, Hostetter TH (2015) Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLoS One 10(12):e0143731.  https://doi.org/10.1371/journal.pone.0143731 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196.  https://doi.org/10.1161/circresaha.117.309715 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116(3):448–455.  https://doi.org/10.1161/circresaha.116.305360 CrossRefPubMedGoogle Scholar
  40. 40.
    Glassock RJ (2008) Uremic toxins: what are they? An integrated overview of pathobiology and classification. J Ren Nutr 18(1):2–6.  https://doi.org/10.1053/j.jrn.2007.10.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2012) ‘United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis 59(1 Suppl 1):A7, e1-420.  https://doi.org/10.1053/j.ajkd.2011.11.015 CrossRefPubMedGoogle Scholar
  42. 42.
    Ermer T, Eckardt KU, Aronson PS, Knauf F (2016) Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens 25(4):363–371.  https://doi.org/10.1097/mnh.0000000000000229 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Turkmen K, Erdur FM (2015) The relationship between colonization of Oxalobacter formigenes serum oxalic acid and endothelial dysfunction in hemodialysis patients: from impaired colon to impaired endothelium. Med Hypotheses 84(3):273–275.  https://doi.org/10.1016/j.mehy.2015.01.010 CrossRefPubMedGoogle Scholar
  44. 44.
    Gulhan B, Turkmen K, Aydin M, Gunay M, Cikman A, Kara M (2015) The relationship between serum oxalic acid, central hemodynamic parameters and colonization by oxalobacter formigenes in hemodialysis patients. Cardiorenal Med 5(3):164–174.  https://doi.org/10.1159/000381219 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mulay SR, Eberhard JN, Pfann V, Marschner JA, Darisipudi MN, Daniel C, Romoli S, Desai J, Grigorescu M, Kumar SV, Rathkolb B, Wolf E, Hrabe de Angelis M, Bauerle T, Dietel B, Wagner CA, Amann K, Eckardt KU, Aronson PS, Anders HJ, Knauf F (2016) Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am J Physiol Renal Physiol 310(8):F785–F795.  https://doi.org/10.1152/ajprenal.00488.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W, European Uremic Toxin Work G (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63(5):1934–1943.  https://doi.org/10.1046/j.1523-1755.2003.00924.x CrossRefPubMedGoogle Scholar
  47. 47.
    Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315.  https://doi.org/10.1038/ki.2012.345 CrossRefPubMedGoogle Scholar
  48. 48.
    Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237.  https://doi.org/10.1159/000360010 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yacoub R, Wyatt CM (2017) Manipulating the gut microbiome to decrease uremic toxins. Kidney Int 91(3):521–523.  https://doi.org/10.1016/j.kint.2017.01.003 CrossRefPubMedGoogle Scholar
  50. 50.
    Yeh YC, Huang MF, Liang SS, Hwang SJ, Tsai JC, Liu TL, Wu PH, Yang YH, Kuo KC, Kuo MC, Chen CS (2016) Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology 53:148–152.  https://doi.org/10.1016/j.neuro.2016.01.006 CrossRefPubMedGoogle Scholar
  51. 51.
    Suchy-Dicey AM, Laha T, Hoofnagle A, Newitt R, Sirich TL, Meyer TW, Thummel KE, Yanez ND, Himmelfarb J, Weiss NS, Kestenbaum BR (2016) Tubular secretion in CKD. J Am Soc Nephrol 27(7):2148–2155.  https://doi.org/10.1681/asn.2014121193 CrossRefPubMedGoogle Scholar
  52. 52.
    Lu LF, Tang WH, Hsu CC, Tsai IT, Hung WC, Yu TH, Wu CC, Chung FM, Lu YC, Lee YJ, Wang CP (2016) Associations among chronic kidney disease, high total p-cresylsulfate and left ventricular systolic dysfunction. Clin Chim Acta 457:63–68.  https://doi.org/10.1016/j.cca.2016.03.012 CrossRefPubMedGoogle Scholar
  53. 53.
    Jiang S, Xie S, Lv D, Wang P, He H, Zhang T, Zhou Y, Lin Q, Zhou H, Jiang J, Nie J, Hou F, Chen Y (2017) Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep 7(1):2870.  https://doi.org/10.1038/s41598-017-02989-2 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7(1):1445.  https://doi.org/10.1038/s41598-017-01387-y CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Banerjee T, Meyer TW, Shafi T, Hostetter TH, Melamed M, Zhu Y, Powe NR (2017) Free and total p-cresol sulfate levels and infectious hospitalizations in hemodialysis patients in CHOICE and HEMO. Medicine (Baltimore) 96(6):e5799.  https://doi.org/10.1097/md.0000000000005799 CrossRefGoogle Scholar
  56. 56.
    WHO, DCO, WHD, 2013.2 (2013) Información general sobre la HIPERTENSIÓN en el mundo. WHO, Geneva, pp 1–40Google Scholar
  57. 57.
    Kelly JP, Curhan GC, Cave DR, Anderson TE, Kaufman DW (2011) Factors related to colonization with Oxalobacter formigenes in U.S. adults. J Endourol 25(4):673–679.  https://doi.org/10.1089/end.2010.0462 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chilton SN, Burton JP, Reid G (2015) Inclusion of fermented foods in food guides around the world. Nutrients 7(1):390–404.  https://doi.org/10.3390/nu7010390 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sluijs I, Forouhi NG, Beulens JW, van der Schouw YT, Agnoli C, Arriola L, Balkau B, Barricarte A, Boeing H, Bueno-de-Mesquita HB, Clavel-Chapelon F, Crowe FL, de Lauzon-Guillain B, Drogan D, Franks PW, Gavrila D, Gonzalez C, Halkjaer J, Kaaks R, Moskal A, Nilsson P, Overvad K, Palli D, Panico S, Quiros JR, Ricceri F, Rinaldi S, Rolandsson O, Sacerdote C, Sanchez MJ, Slimani N, Spijkerman AM, Teucher B, Tjonneland A, Tormo MJ, Tumino R, van der A DL, Sharp SJ, Langenberg C, Feskens EJ, Riboli E, Wareham NJ, InterAct C (2012) The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am J Clin Nutr 96(2):382–390.  https://doi.org/10.3945/ajcn.111.021907 CrossRefPubMedGoogle Scholar
  60. 60.
    Lau E, Neves JS, Ferreira-Magalhaes M, Carvalho D, Freitas P (2019) Probiotic ingestion, obesity, and metabolic-related disorders: results from NHANES, 1999-2014. Nutrients.  https://doi.org/10.3390/nu11071482 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Barengolts E, Smith ED, Reutrakul S, Tonucci L, Anothaisintawee T (2019) The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: a meta-analysis of nine randomized controlled trials. Nutrients.  https://doi.org/10.3390/nu11030671 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Punaro GR, Maciel FR, Rodrigues AM, Rogero MM, Bogsan CS, Oliveira MN, Ihara SS, Araujo SR, Sanches TR, Andrade LC, Higa EM (2014) Kefir administration reduced progression of renal injury in STZ-diabetic rats by lowering oxidative stress. Nitric Oxide 37:53–60.  https://doi.org/10.1016/j.niox.2013.12.012 CrossRefPubMedGoogle Scholar
  63. 63.
    Sari EK, Bakir B, Aydin BD, Sozmen M (2014) The effects of kefir, koumiss, yogurt and commercial probiotic formulations on PPARalpha and PPAR-beta/delta expressions in mouse kidney. Biotech Histochem 89(4):287–295.  https://doi.org/10.3109/10520295.2013.844274 CrossRefPubMedGoogle Scholar
  64. 64.
    Dumas AA, Lapointe A, Dugrenier M, Provencher V, Lamarche B, Desroches S (2017) A systematic review of the effect of yogurt consumption on chronic diseases risk markers in adults. Eur J Nutr 56(4):1375–1392.  https://doi.org/10.1007/s00394-016-1341-7 CrossRefPubMedGoogle Scholar
  65. 65.
    Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610.  https://doi.org/10.2215/cjn.00490114 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, Kieffer DA, Adams SH, Martin RJ (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9(12):e114881.  https://doi.org/10.1371/journal.pone.0114881 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH (2016) Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 310(9):F857–F871.  https://doi.org/10.1152/ajprenal.00513.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Laffin MR, Tayebi Khosroshahi H, Park H, Laffin LJ, Madsen K, Kafil HS, Abedi B, Shiralizadeh S, Vaziri ND (2019) Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: microbial analysis from a randomized placebo-controlled trial. Hemodial Int 23(3):343–347.  https://doi.org/10.1111/hdi.12753 CrossRefPubMedGoogle Scholar
  69. 69.
    Yoshifuji A, Wakino S, Irie J, Matsui A, Hasegawa K, Tokuyama H, Hayashi K, Itoh H (2018) Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats. Clin Exp Nephrol 22(5):1069–1078.  https://doi.org/10.1007/s10157-018-1577-z CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yamamoto S, Zuo Y, Ma J, Yancey PG, Hunley TE, Motojima M, Fogo AB, Linton MF, Fazio S, Ichikawa I, Kon V (2011) Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice. Nephrol Dial Transplant 26(8):2491–2497.  https://doi.org/10.1093/ndt/gfq759 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, Kisu K, Sekimoto A, Saito R, Oe Y, Matsumoto Y, Tomioka Y, Mori T, Takahashi N, Sato H, Abe T, Niwa T, Ito S (2017) Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins (Basel).  https://doi.org/10.3390/toxins10010019 CrossRefGoogle Scholar
  72. 72.
    Ali BH, Inuwa I, Al Za’abi M, Al Bahlani S, Al Issaei H, Ramkumar A, Madanagopal T, Nemmar A, Malheiros DM, Zatz R (2014) Renal and myocardial histopathology and morphometry in rats with adenine—induced chronic renal failure: influence of gum acacia. Cell Physiol Biochem 34(3):818–828.  https://doi.org/10.1159/000363045 CrossRefPubMedGoogle Scholar
  73. 73.
    Al Za’abi M, Al Busaidi M, Yasin J, Schupp N, Nemmar A, Ali BH (2015) Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon. Am J Transl Res 7(1):28–38PubMedPubMedCentralGoogle Scholar
  74. 74.
    Al Suleimani YM, Al Za’abi M, Ramkumar A, Al Mahruqi AS, Tageldin MH, Nemmar A, Ali BH (2015) Influence of treatment with gum acacia on renal vascular responses in a rat model of chronic kidney disease. Eur Rev Med Pharmacol Sci 19(3):498–506PubMedGoogle Scholar
  75. 75.
    Al Za’abi M, Al Salam S, Al Suleimani Y, Manoj P, Nemmar A, Ali BH (2018) Gum acacia improves renal function and ameliorates systemic inflammation, oxidative and nitrosative stress in streptozotocin-induced diabetes in rats with adenine-induced chronic kidney disease. Cell Physiol Biochem 45(6):2293–2304.  https://doi.org/10.1159/000488176 CrossRefPubMedGoogle Scholar
  76. 76.
    Feng YL, Cao G, Chen DQ, Vaziri ND, Chen L, Zhang J, Wang M, Guo Y, Zhao YY (2019) Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell Mol Life Sci.  https://doi.org/10.1007/s00018-019-03155-9 CrossRefPubMedGoogle Scholar
  77. 77.
    Niwa T, Tsukushi S, Ise M, Miyazaki T, Tsubakihara Y, Owada A, Shiigai T (1997) Indoxyl sulfate and progression of renal failure: effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner Electrolyte Metab 23(3–6):179–184PubMedGoogle Scholar
  78. 78.
    Menon V, Kopple JD, Wang X, Beck GJ, Collins AJ, Kusek JW, Greene T, Levey AS, Sarnak MJ (2009) Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 53(2):208–217.  https://doi.org/10.1053/j.ajkd.2008.08.009 CrossRefPubMedGoogle Scholar
  79. 79.
    Elamin S, Alkhawaja MJ, Bukhamsin AY, Idris MAS, Abdelrahman MM, Abutaleb NK, Housawi AA (2017) Gum arabic reduces C-reactive protein in chronic kidney disease patients without affecting urea or indoxyl sulfate levels. Int J Nephrol 2017:9501470.  https://doi.org/10.1155/2017/9501470 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ, Borges NA, Nakao LS, Mafra D (2018) Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct 9(12):6508–6516.  https://doi.org/10.1039/c8fo01876f CrossRefPubMedGoogle Scholar
  81. 81.
    Pavan M (2016) Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nefrol 68(2):222–226PubMedGoogle Scholar
  82. 82.
    Rossi M, Johnson DW, Morrison M, Pascoe E, Coombes JS, Forbes JM, McWhinney BC, Ungerer JPJ, Dimeski G, Campbell KL (2014) SYNbiotics Easing Renal failure by improving Gut microbiologY (SYNERGY): a protocol of placebo-controlled randomised cross-over trial. BMC Nephrol 15:106CrossRefGoogle Scholar
  83. 83.
    Simeoni M, Citraro ML, Deodato F, Provenzano M, Capria M, Comi A, Libri E, Andreucci M, Puja A, Abenavoli L, Cocchi M, Fuiano G (2018) An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). Eur J Nutr.  https://doi.org/10.1007/s00394-018-1785-z CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Thongprayoon C, Hatch ST, Kaewput W, Sharma K, Ungprasert P, Wijarnpreecha K, D’Costa M, Mao MA, Cheungpasitporn W (2018) The effects of probiotics on renal function and uremic toxins in patients with chronic kidney disease; a meta-analysis of randomized controlled trials. J Nephropathol 7(3):106–114.  https://doi.org/10.15171/jnp.2018.25 CrossRefGoogle Scholar
  85. 85.
    Thongprayoon C, Kaewput W, Hatch ST, Bathini T, Sharma K, Wijarnpreecha K, Ungprasert P, D’Costa M, Mao MA, Cheungpasitporn W (2019) Effects of probiotics on inflammation and uremic toxins among patients on dialysis: a systematic review and meta-analysis. Dig Dis Sci 64(2):469–479.  https://doi.org/10.1007/s10620-018-5243-9 CrossRefPubMedGoogle Scholar
  86. 86.
    Jia L, Jia Q, Yang J, Jia R, Zhang H (2018) Efficacy of probiotics supplementation on chronic kidney disease: a systematic review and meta-analysis. Kidney Blood Press Res 43(5):1623–1635.  https://doi.org/10.1159/000494677 CrossRefPubMedGoogle Scholar
  87. 87.
    Tao S, Tao S, Cheng Y, Liu J, Ma L, Fu P (2018) Effects of probiotic supplements on the progression of chronic kidney disease: a meta-analysis. Nephrology (Carlton).  https://doi.org/10.1111/nep.13549 CrossRefGoogle Scholar
  88. 88.
    Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, Ferreira DC, Nakao LS, Rosado A, Fouque D, Mafra D (2018) Probiotic supplementation in chronic kidney disease: a double-blind, randomized. Placebo-controlled Trial. J Ren Nutr 28(1):28–36.  https://doi.org/10.1053/j.jrn.2017.06.010 CrossRefPubMedGoogle Scholar
  89. 89.
    de Faria Barros A, Borges NA, Nakao LS, Dolenga CJ, do Carmo FL, de Carvalho Ferreira D, Stenvinkel P, Bergman P, Lindholm B, Mafra D (2018) Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: a double-blind, randomized, placebo-controlled trial. J Funct Foods 46:378–383.  https://doi.org/10.1016/j.jff.2018.05.018 CrossRefGoogle Scholar
  90. 90.
    Deltombe O, Van Biesen W, Glorieux G, Massy Z, Dhondt A, Eloot S (2015) Exploring protein binding of uremic toxins in patients with different stages of chronic kidney disease and during hemodialysis. Toxins (Basel) 7(10):3933–3946.  https://doi.org/10.3390/toxins7103933 CrossRefGoogle Scholar
  91. 91.
    Mutsaers HA, Engelke UF, Wilmer MJ, Wetzels JF, Wevers RA, van den Heuvel LP, Hoenderop JG, Masereeuw R (2013) Optimized metabolomic approach to identify uremic solutes in plasma of stage 3-4 chronic kidney disease patients. PLoS One 8(8):e71199.  https://doi.org/10.1371/journal.pone.0071199 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T (2003) Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63(5):1671–1680.  https://doi.org/10.1046/j.1523-1755.2003.00906.x CrossRefPubMedGoogle Scholar
  93. 93.
    Han H, Chen Y, Zhu Z, Su X, Ni J, Du R, Zhang R, Jin W (2016) p-Cresyl sulfate promotes the formation of atherosclerotic lesions and induces plaque instability by targeting vascular smooth muscle cells. Front Med 10(3):320–329.  https://doi.org/10.1007/s11684-016-0463-x CrossRefPubMedGoogle Scholar
  94. 94.
    Kim SH, Yu MA, Ryu ES, Jang YH, Kang DH (2012) Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab Invest 92(4):488–498.  https://doi.org/10.1038/labinvest.2011.194 CrossRefPubMedGoogle Scholar
  95. 95.
    Satoh M, Hayashi H, Watanabe M, Ueda K, Yamato H, Yoshioka T, Motojima M (2003) Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol 95(3):e111–e118.  https://doi.org/10.1159/000074327 CrossRefPubMedGoogle Scholar
  96. 96.
    Nishiyama K, Aono K, Fujimoto Y, Kuwamura M, Okada T, Tokumoto H, Izawa T, Okano R, Nakajima H, Takeuchi T, Azuma YT (2019) Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J Cell Physiol 234(5):6667–6678.  https://doi.org/10.1002/jcp.27408 CrossRefPubMedGoogle Scholar
  97. 97.
    Miranda Alatriste PV, Urbina Arronte R, Gomez Espinosa CO, Espinosa Cuevas Mde L (2014) Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp 29(3):582–590.  https://doi.org/10.3305/nh.2014.29.3.7179 CrossRefPubMedGoogle Scholar
  98. 98.
    Soleimani A, Zarrati Mojarrad M, Bahmani F, Taghizadeh M, Ramezani M, Tajabadi-Ebrahimi M, Jafari P, Esmaillzadeh A, Asemi Z (2017) Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int 91(2):435–442.  https://doi.org/10.1016/j.kint.2016.09.040 CrossRefPubMedGoogle Scholar
  99. 99.
    Ramos CI, Armani RG, Canziani MEF, Dalboni MA, Dolenga CJR, Nakao LS, Campbell KL, Cuppari L (2018) Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant.  https://doi.org/10.1093/ndt/gfy171 CrossRefPubMedGoogle Scholar
  100. 100.
    Haghighat N, Mohammadshahi M, Shayanpour S, Haghighizadeh MH (2018) Effect of synbiotic and probiotic supplementation on serum levels of endothelial cell adhesion molecules in hemodialysis patients: a randomized control study. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-018-9477-9 CrossRefPubMedGoogle Scholar
  101. 101.
    Cruz-Mora J, Martinez-Hernandez NE, Martin del Campo-Lopez F, Viramontes-Horner D, Vizmanos-Lamotte B, Munoz-Valle JF, Garcia-Garcia G, Parra-Rojas I, Castro-Alarcon N (2014) Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr 24(5):330–335.  https://doi.org/10.1053/j.jrn.2014.05.006 CrossRefPubMedGoogle Scholar
  102. 102.
    Xie LM, Ge YY, Huang X, Zhang YQ, Li JX (2015) Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. Int J Clin Exp Med 8(1):1363–1369PubMedPubMedCentralGoogle Scholar
  103. 103.
    Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, Tam P, Rao AV, Anteyi E, Musso CG (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27(9):634–647.  https://doi.org/10.1007/s12325-010-0059-9 CrossRefPubMedGoogle Scholar
  104. 104.
    Eidi F, Poor-Reza Gholi F, Ostadrahimi A, Dalili N, Samadian F, Barzegari A (2018) Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and P-Cresol) in hemodialysis patients: a double blind randomized clinical trial. Clin Nutr ESPEN 28:158–164.  https://doi.org/10.1016/j.clnesp.2018.08.010 CrossRefPubMedGoogle Scholar
  105. 105.
    Natarajan R, Pechenyak B, Vyas U, Ranganathan P, Weinberg A, Liang P, Mallappallil MC, Norin AJ, Friedman EA, Saggi SJ (2014) Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 2014:568571.  https://doi.org/10.1155/2014/568571 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lopes R, Theodoro JMV, da Silva BP, Queiroz VAV, de Castro Moreira ME, Mantovani HC, Hermsdorff HH, Martino HSD (2019) Synbiotic meal decreases uremic toxins in hemodialysis individuals: a placebo-controlled trial. Food Res Int 116:241–248.  https://doi.org/10.1016/j.foodres.2018.08.024 CrossRefPubMedGoogle Scholar
  107. 107.
    Shariaty Z, Mahmoodi Shan GR, Farajollahi M, Amerian M, Behnam Pour N (2017) The effects of probiotic supplement on hemoglobin in chronic renal failure patients under hemodialysis: a randomized clinical trial. J Res Med Sci 22:74.  https://doi.org/10.4103/jrms.jrms_614_16 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Khosroshahi HT, Abedi B, Ghojazadeh M, Samadi A, Jouyban A (2019) Effects of fermentable high fiber diet supplementation on gut derived and conventional nitrogenous product in patients on maintenance hemodialysis: a randomized controlled trial. Nutr Metab (Lond) 16:18.  https://doi.org/10.1186/s12986-019-0343-x CrossRefGoogle Scholar
  109. 109.
    Yang J, Lim SY, Ko YS, Lee HY, Oh SW, Kim MG, Cho WY, Jo SK (2018) Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant.  https://doi.org/10.1093/ndt/gfy172 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Iwashita Y, Ohya M, Yashiro M, Sonou T, Kawakami K, Nakashima Y, Yano T, Iwashita Y, Mima T, Negi S, Kubo K, Tomoda K, Odamaki T, Shigematsu T (2018) Dietary changes involving bifidobacterium longum and other nutrients delays chronic kidney disease progression. Am J Nephrol 47(5):325–332.  https://doi.org/10.1159/000488947 CrossRefPubMedGoogle Scholar
  111. 111.
    Nanto-Hara F, Kanemitsu Y, Fukuda S, Kikuchi K, Asaji K, Saigusa D, Iwasaki T, Ho HJ, Mishima E, Suzuki T, Suzuki C, Tsukimi T, Matsuhashi T, Oikawa Y, Akiyama Y, Kure S, Owada Y, Tomioka Y, Soga T, Ito S, Abe T (2019) The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol Dial Transplant.  https://doi.org/10.1093/ndt/gfz126 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador ZubiránMexico CityMexico
  2. 2.Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio ChávezMexico CityMexico
  3. 3.Departamento de Cirugía Experimental, Instituto Nacional de Nutrición Salvador ZubiránMexico CityMexico

Personalised recommendations