Advertisement

International Urology and Nephrology

, Volume 51, Issue 1, pp 101–111 | Cite as

Vitamin D and calcium kidney stones: a review and a proposal

  • Sanaz TavasoliEmail author
  • Maryam Taheri
Nephrology - Review

Abstract

Urolithiasis is a common, highly recurrent disease with increasing prevalence worldwide. The association between vitamin D and calcium stones has often been investigated on the basis of the role of vitamin D in calcium homeostasis. Currently, there is no consensus on the management of vitamin D deficiency in patients with renal calculi, because of controversies about the relationship between vitamin D and calcium stones. However, the vitamin D deficiency is shown to be highly prevalent among kidney stone formers, and some studies found a higher prevalence in stone formers compared with non-stone formers. This article attempts to review the relationship between calcium stones and vitamin D, and propose a mechanism for the association between vitamin D deficiency and calcium-based calculi according to the substantial role of inflammation and oxidative stress in calcium stone formation and also the pro-inflammatory effect of vitamin D deficiency.

Keywords

Urolithiasis Calcium stones Vitamin D deficiency Oxidative stress Secondary hyperparathyroidism Inflammation 

Notes

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors have no relevant interests to declare.

References

  1. 1.
    Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Adv Urol  https://doi.org/10.1155/2018/3068365 Google Scholar
  2. 2.
    Knoll T (2010) Epidemiology, pathogenesis, and pathophysiology of urolithiasis. Eur Urol Suppl 9(12):802–806.  https://doi.org/10.1016/j.eursup.2010.11.006 Google Scholar
  3. 3.
    Hosseini MM, Shakeri S, Manaheji F, Aminsharifi A, Ezatzadegan S, Pakfetrat M, Basiratnia M, Hosseini M (2014) Stone composition in patients who undergo renal stone surgery: review of 423 stone analyses in southern Iran. Iran J Med Sci 39(1):75–76Google Scholar
  4. 4.
    Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39(4):231–243.  https://doi.org/10.1007/s00240-010-0349-3 Google Scholar
  5. 5.
    West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H (2008) Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am J Kidney Dis 51(5):741–747.  https://doi.org/10.1053/j.ajkd.2007.12.030 Google Scholar
  6. 6.
    Kohjimoto Y, Sasaki Y, Iguchi M, Matsumura N, Inagaki T, Hara I (2013) Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis 61(6):923–929.  https://doi.org/10.1053/j.ajkd.2012.12.028 Google Scholar
  7. 7.
    Polat EC, Ozcan L, Cakir SS, Dursun M, Otunctemur A, Ozbek E (2015) Relationship between calcium stone disease and metabolic syndrome. Urol J 12(6):2391–2395Google Scholar
  8. 8.
    Lieske JC (2014) New insights regarding the interrelationship of obesity, diet, physical activity, and kidney stones. J Am Soc Nephrol 25(2):211–212.  https://doi.org/10.1681/asn.2013111189 Google Scholar
  9. 9.
    Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40(2):95–112.  https://doi.org/10.1007/s00240-011-0448-9 Google Scholar
  10. 10.
    Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, El-Hajj Fuleihan G, Josse RG, Lips P, Morales-Torres J, Group IOFCoSANW (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20(11):1807–1820.  https://doi.org/10.1007/s00198-009-0954-6 Google Scholar
  11. 11.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22(4):477–501.  https://doi.org/10.1210/edrv.22.4.0437 Google Scholar
  12. 12.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281.  https://doi.org/10.1056/NEJMra070553 Google Scholar
  13. 13.
    Kendrick J, Targher G, Smits G, Chonchol M (2009) 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 205(1):255–260.  https://doi.org/10.1016/j.atherosclerosis.2008.10.033 Google Scholar
  14. 14.
    Carbone F, Mach F, Vuilleumier N, Montecucco F (2014) Potential pathophysiological role for the vitamin D deficiency in essential hypertension. World J Cardiol 6(5):260–276.  https://doi.org/10.4330/wjc.v6.i5.260 Google Scholar
  15. 15.
    Prasad P, Kochhar A (2016) Interplay of vitamin D and metabolic syndrome: a review. Diabetes Metab Syndr 10:105–112.  https://doi.org/10.1016/j.dsx.2015.02.014 Google Scholar
  16. 16.
    Chiu KC, Chu A, Go VL, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79(5):820–825Google Scholar
  17. 17.
    Moukayed M, Grant WB (2013) Molecular link between vitamin D and cancer prevention. Nutrients 5(10):3993–4021.  https://doi.org/10.3390/nu5103993 Google Scholar
  18. 18.
    IOM (Institute of Medicine) (2011) Dietary reference Intakes for calcium and vitamin D. National Academies Press, US, Washington, D. C.  https://doi.org/10.17226/13050 Google Scholar
  19. 19.
    Carlberg C (2014) The physiology of vitamin D-far more than calcium and bone. Front Physiol 5:335.  https://doi.org/10.3389/fphys.2014.00335 Google Scholar
  20. 20.
    Sharifi N, Amani R, Hajiani E, Cheraghian B (2014) Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? a randomized clinical trial. Endocrine 47(1):70–80.  https://doi.org/10.1007/s12020-014-0336-5 Google Scholar
  21. 21.
    Tang J, Chonchol MB (2013) Vitamin D and kidney stone disease. Curr Opin Nephrol Hypertens 22(4):383–389.  https://doi.org/10.1097/MNH.0b013e328360bbcd Google Scholar
  22. 22.
    Elkoushy MA, Sabbagh R, Unikowsky B, Andonian S (2012) Prevalence and metabolic abnormalities of vitamin D-inadequate patients presenting with urolithiasis to a tertiary stone clinic. Urology 79(4):781–785.  https://doi.org/10.1016/j.urology.2011.09.004 Google Scholar
  23. 23.
    Johri N, Jaeger P, Ferraro PM, Shavit L, Nair D, Robertson WG, Gambaro G, Unwin RJ (2017) Vitamin D deficiency is prevalent among idiopathic stone formers, but does correction pose any risk? Urolithiasis 45:535–543Google Scholar
  24. 24.
    Ticinesi A, Nouvenne A, Ferraro PM, Folesani G, Lauretani F, Allegri F, Guerra A, Cerundolo N, Aloe R, Lippi G, Maggio M, Gambaro G, Borghi L, Meschi T (2016) Idiopathic calcium nephrolithiasis and hypovitaminosis D: a case-control study. Urology 87:40–45.  https://doi.org/10.1016/j.urology.2015.10.009 Google Scholar
  25. 25.
    Giron-Prieto MS, Del Carmen Cano-Garcia M, Arrabal-Polo MA, Poyatos-Andujar A, Quesada-Charneco M, de Haro-Munoz T, Arias-Santiago S, Arrabal-Martin M (2016) Analysis of vitamin D deficiency in calcium stone-forming patients. Int Urol Nephrol.  https://doi.org/10.1007/s11255-016-1290-3 Google Scholar
  26. 26.
    Vestergaard P (2015) Primary hyperparathyroidism and nephrolithiasis. Ann Endocrinol (Paris) 76(2):116–119.  https://doi.org/10.1016/j.ando.2015.03.002 Google Scholar
  27. 27.
    Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci (Lond) 106(6):549–561.  https://doi.org/10.1042/cs20040048 Google Scholar
  28. 28.
    Shavit L, Jaeger P, Unwin RJ (2015) What is nephrocalcinosis? Kidney Int 88(1):35–43.  https://doi.org/10.1038/ki.2015.76 Google Scholar
  29. 29.
    Oliveira B, Kleta R, Bockenhauer D, Walsh SB (2016) Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Renal Physiol 311(6):F1243–Ff1252.  https://doi.org/10.1152/ajprenal.00211.2016 Google Scholar
  30. 30.
    Bhojani N, Paonessa JE, Hameed TA, Worcester EM, Evan AP, Coe FL, Borofsky MS, Lingeman JE (2015) Nephrocalcinosis in calcium stone formers who do not have systemic disease. J Urol 194(5):1308–1312.  https://doi.org/10.1016/j.juro.2015.05.074 Google Scholar
  31. 31.
    Daudon M, Letavernier E, Frochot V, Haymann JP, Bazin D, Jungers P (2016) Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate monohydrate or dihydrate crystals. C R Chim 19(11–12):1504–1513.  https://doi.org/10.1016/j.crci.2016.08.009 Google Scholar
  32. 32.
    Tsujihata M (2008) Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol 15(2):115–120.  https://doi.org/10.1111/j.1442-2042.2007.01953.x Google Scholar
  33. 33.
    Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38(3):147–160.  https://doi.org/10.1007/s00240-010-0271-8 Google Scholar
  34. 34.
    Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG (2016) Kidney stones. Nat Rev Dis Primers 2:16008.  https://doi.org/10.1038/nrdp.2016.8 Google Scholar
  35. 35.
    Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46(3):847–854Google Scholar
  36. 36.
    Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25(5):831–841.  https://doi.org/10.1007/s00467-009-1116-y Google Scholar
  37. 37.
    Evan AP, Worcester EM, Coe FL, Williams J Jr, Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(Suppl 1):19–32.  https://doi.org/10.1007/s00240-014-0701-0 Google Scholar
  38. 38.
    Verkoelen CF (2006) Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17(6):1673–1687.  https://doi.org/10.1681/ASN.2006010088 Google Scholar
  39. 39.
    Sakhaee K (2009) Recent advances in the pathophysiology of nephrolithiasis. Kidney Int 75(6):585–595.  https://doi.org/10.1038/ki.2008.626 Google Scholar
  40. 40.
    Wiessner JH, Hung LY, Mandel NS (2003) Crystal attachment to injured renal collecting duct cells: influence of urine proteins and pH. Kidney Int 63(4):1313–1320.  https://doi.org/10.1046/j.1523-1755.2003.00866.x Google Scholar
  41. 41.
    Umekawa T, Iguchi M, Uemura H, Khan SR (2006) Oxalate ions and calcium oxalate crystal-induced up-regulation of osteopontin and monocyte chemoattractant protein-1 in renal fibroblasts. BJU Int 98(3):656–660.  https://doi.org/10.1111/j.1464-410X.2006.06334.x Google Scholar
  42. 42.
    Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14(12):3155–3166Google Scholar
  43. 43.
    Khan SR (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34(2):86–91.  https://doi.org/10.1007/s00240-005-0016-2 Google Scholar
  44. 44.
    Thamilselvan V, Menon M, Thamilselvan S (2009) Oxalate-induced activation of PKC-alpha and -delta regulates NADPH oxidase-mediated oxidative injury in renal tubular epithelial cells. Am J Physiol Renal Physiol 297(5):F1399–F1410.  https://doi.org/10.1152/ajprenal.00051.2009 Google Scholar
  45. 45.
    Thamilselvan V, Menon M, Thamilselvan S (2014) Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of alpha-tocopherol and ascorbic acid. BJU Int.  https://doi.org/10.1111/bju.12642 Google Scholar
  46. 46.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111(5):607–616.  https://doi.org/10.1172/JCI200317038 Google Scholar
  47. 47.
    Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318.  https://doi.org/10.1038/sj.ki.5000238 Google Scholar
  48. 48.
    Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811.  https://doi.org/10.1016/j.juro.2012.05.078 Google Scholar
  49. 49.
    Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 290(10):1315–1323.  https://doi.org/10.1002/ar.20580 Google Scholar
  50. 50.
    Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, Munch LC, Coe FL (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64(6):2150–2154.  https://doi.org/10.1046/j.1523-1755.2003.00316.x Google Scholar
  51. 51.
    Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl 1):41–45.  https://doi.org/10.1007/s00240-014-0718-4 Google Scholar
  52. 52.
    Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187(3):1094–1100.  https://doi.org/10.1016/j.juro.2011.10.125 Google Scholar
  53. 53.
    Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, Ando R, Mizuno K, Kawai N, Tozawa K, Kohri K, Yasui T (2017) Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol 28(1):333–347.  https://doi.org/10.1681/asn.2015111271 Google Scholar
  54. 54.
    Joshi S, Peck AB, Khan SR (2013) NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid Med Cell Longev.  https://doi.org/10.1155/2013/462361 Google Scholar
  55. 55.
    Khan SR (2014) Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol 3(3):256–276.  https://doi.org/10.3978/j.issn.2223-4683.2014.06.04 Google Scholar
  56. 56.
    Tsuji H, Wang W, Sunil J, Shimizu N, Yoshimura K, Uemura H, Peck AB, Khan SR (2016) Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 34(1):89–95.  https://doi.org/10.1007/s00345-015-1563-y Google Scholar
  57. 57.
    Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15(3):635–644Google Scholar
  58. 58.
    Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK (2002) Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 277(15):13321–13330.  https://doi.org/10.1074/jbc.M108203200 Google Scholar
  59. 59.
    Han HJ, Lim MJ, Lee YJ (2004) Oxalate inhibits renal proximal tubule cell proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways. Am J Physiol Cell Physiol 287(4):C1058–C1066.  https://doi.org/10.1152/ajpcell.00063.2004 Google Scholar
  60. 60.
    Tugcu V, Ozbek E, Kemahli E, Cekmen MB, Caner N, Somay A, Erturkuner P, Seckin I, Demir CG, Altug T, Tasci AI (2007) Rapid communication: protective effect of a nuclear factor kappaB inhibitor, pyrolidium dithiocarbamate, in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Endourol 21(9):1097–1106.  https://doi.org/10.1089/end.2007.0074 Google Scholar
  61. 61.
    Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104(1):115–120.  https://doi.org/10.1111/j.1464-410X.2009.08374.x Google Scholar
  62. 62.
    Carrasco-Valiente J, Anglada-Curado FJ, Aguilar-Melero P, Gonzalez-Ojeda R, Muntane-Relat J, Padillo-Ruiz FJ, Requena-Tapia MJ (2012) State of acute phase markers and oxidative stress in patients with kidney stones in the urinary tract. Actas Urol Esp 36(5):296–301.  https://doi.org/10.1016/j.acuro.2011.08.004 Google Scholar
  63. 63.
    Huang HS, Ma MC, Chen CF, Chen J (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62(6):1123–1128Google Scholar
  64. 64.
    Kittikowit W, Waiwijit U, Boonla C, Ruangvejvorachai P, Pimratana C, Predanon C, Ratchanon S, Tosukhowong P (2014) Increased oxidative DNA damage seen in renal biopsies adjacent stones in patients with nephrolithiasis. Urolithiasis 42(5):387–394.  https://doi.org/10.1007/s00240-014-0676-x Google Scholar
  65. 65.
    Liu Z, Wang T, Yang J, Wang S, Yang W, Liu J, Ye Z (2012) Calcium oxalate monohydrate crystals stimulate monocyte chemoattractant protein-1 and transforming growth factor beta1 expression in human renal epithelial cells. Mol Med Rep 5(5):1241–1244.  https://doi.org/10.3892/mmr.2012.813 Google Scholar
  66. 66.
    Tsao KC, Wu TL, Chang PY, Sun CF, Wu LL, Wu JT (2007) Multiple risk markers for atherogenesis associated with chronic inflammation are detectable in patients with renal stones. J Clin Lab Anal 21(6):426–431.  https://doi.org/10.1002/jcla.20215 Google Scholar
  67. 67.
    Boonla C, Wunsuwan R, Tungsanga K, Tosukhowong P (2007) Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res 35(4):185–191.  https://doi.org/10.1007/s00240-007-0098-0 Google Scholar
  68. 68.
    Ma MC, Chen YS, Huang HS (2014) Erythrocyte oxidative stress in patients with calcium oxalate stones correlates with stone size and renal tubular damage. Urology 83(2):510, e519–e517.  https://doi.org/10.1016/j.urology.2013.09.050 Google Scholar
  69. 69.
    Fujii Y, Okada A, Yasui T, Niimi K, Hamamoto S, Hirose M, Kubota Y, Tozawa K, Hayashi Y, Kohri K (2013) Effect of adiponectin on kidney crystal formation in metabolic syndrome model mice via inhibition of inflammation and apoptosis. PLoS ONE 8(4):e61343.  https://doi.org/10.1371/journal.pone.0061343 Google Scholar
  70. 70.
    Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS, Kim SH (2013) Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep 65(4):970–979Google Scholar
  71. 71.
    Huang HS, Chen J, Chen CF, Ma MC (2006) Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 70(4):699–710.  https://doi.org/10.1038/sj.ki.5001651 Google Scholar
  72. 72.
    Lee HJ, Jeong SJ, Park MN, Linnes M, Han HJ, Kim JH, Lieske JC, Kim SH (2012) Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells. Biol Pharm Bull 35(4):539–544Google Scholar
  73. 73.
    Davalos M, Konno S, Eshghi M, Choudhury M (2010) Oxidative renal cell injury induced by calcium oxalate crystal and renoprotection with antioxidants: a possible role of oxidative stress in nephrolithiasis. J Endourol 24(3):339–345.  https://doi.org/10.1089/end.2009.0205 Google Scholar
  74. 74.
    Holoch PA, Tracy CR (2011) Antioxidants and self-reported history of kidney stones: the National Health and Nutrition Examination Survey. J Endourol 25(12):1903–1908.  https://doi.org/10.1089/end.2011.0130 Google Scholar
  75. 75.
    DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689s–1696sGoogle Scholar
  76. 76.
    Hossein-nezhad A, Holick MF (2013) Vitamin D for health: a global perspective. Mayo Clin Proc 88(7):720–755.  https://doi.org/10.1016/j.mayocp.2013.05.011 Google Scholar
  77. 77.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine S (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930.  https://doi.org/10.1210/jc.2011-0385 Google Scholar
  78. 78.
    Kennel KA, Drake MT, Hurley DL (2010) Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc 85(8):752–758.  https://doi.org/10.4065/mcp.2010.0138 Google Scholar
  79. 79.
    Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP (2014) Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 348:g2035.  https://doi.org/10.1136/bmj.g2035 Google Scholar
  80. 80.
    Beveridge LA, Struthers AD, Khan F, Jorde R, Scragg R, Macdonald HM, Alvarez JA, Boxer RS, Dalbeni A, Gepner AD, Isbel NM, Larsen T, Nagpal J, Petchey WG, Stricker H, Strobel F, Tangpricha V, Toxqui L, Vaquero MP, Wamberg L, Zittermann A, Witham MD (2015) Effect of Vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med 175(5):745–754.  https://doi.org/10.1001/jamainternmed.2015.0237 Google Scholar
  81. 81.
    Wu C, Qiu S, Zhu X, Li L (2017) Vitamin D supplementation and glycemic control in type 2 diabetes patients: a systematic review and meta-analysis. Metabolism 73:67–76.  https://doi.org/10.1016/j.metabol.2017.05.006 Google Scholar
  82. 82.
    Rejnmark L, Bislev LS, Cashman KD, Eiriksdottir G, Gaksch M, Grubler M, Grimnes G, Gudnason V, Lips P, Pilz S, van Schoor NM, Kiely M, Jorde R (2017) Non-skeletal health effects of vitamin D supplementation: a systematic review on findings from meta-analyses summarizing trial data. PLoS ONE 12(7):e0180512.  https://doi.org/10.1371/journal.pone.0180512 Google Scholar
  83. 83.
    Wobke TK, Sorg BL, Steinhilber D (2014) Vitamin D in inflammatory diseases. Front Physiol 5:244.  https://doi.org/10.3389/fphys.2014.00244 Google Scholar
  84. 84.
    Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188(5):2127–2135.  https://doi.org/10.4049/jimmunol.1102412 Google Scholar
  85. 85.
    Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437(1):7–11.  https://doi.org/10.1016/j.bbrc.2013.06.004 Google Scholar
  86. 86.
    Sanchez-Nino MD, Bozic M, Cordoba-Lanus E, Valcheva P, Gracia O, Ibarz M, Fernandez E, Navarro-Gonzalez JF, Ortiz A, Valdivielso JM (2012) Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 302(6):F647–F657.  https://doi.org/10.1152/ajprenal.00090.2011 Google Scholar
  87. 87.
    Perez-Hernandez N, Aptilon-Duque G, Nostroza-Hernandez MC, Vargas-Alarcon G, Rodriguez-Perez JM, Blachman-Braun R (2016) Vitamin D and its effects on cardiovascular diseases: a comprehensive review. Korean J Intern Med 31(6):1018–1029.  https://doi.org/10.3904/kjim.2015.224 Google Scholar
  88. 88.
    Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, Cohen R, Klopot A, Zhang Z, Li YC (2007) 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem 282(41):29821–29830.  https://doi.org/10.1074/jbc.M705495200 Google Scholar
  89. 89.
    Weng S, Sprague JE, Oh J, Riek AE, Chin K, Garcia M, Bernal-Mizrachi C (2013) Vitamin D deficiency induces high blood pressure and accelerates atherosclerosis in mice. PLoS ONE 8(1):e54625.  https://doi.org/10.1371/journal.pone.0054625 Google Scholar
  90. 90.
    Kong J, Zhu X, Shi Y, Liu T, Chen Y, Bhan I, Zhao Q, Thadhani R, Li YC (2013) VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol Endocrinol 27(12):2116–2125.  https://doi.org/10.1210/me.2013-1146 Google Scholar
  91. 91.
    Deng X, Cheng J, Shen M (2016) Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress. J Endocrinol Invest 39(6):657–666.  https://doi.org/10.1007/s40618-015-0414-4 Google Scholar
  92. 92.
    Garcia IM, Altamirano L, Mazzei L, Fornes M, Cuello-Carrion FD, Ferder L, Manucha W (2014) Vitamin D receptor-modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones 19(4):479–491.  https://doi.org/10.1007/s12192-013-0474-3 Google Scholar
  93. 93.
    Carrara D, Bernini M, Bacca A, Rugani I, Duranti E, Virdis A, Ghiadoni L, Taddei S, Bernini G (2014) Cholecalciferol administration blunts the systemic renin-angiotensin system in essential hypertensives with hypovitaminosis D. J Renin Angiotensin Aldosterone Syst 15(1):82–87.  https://doi.org/10.1177/1470320312471149 Google Scholar
  94. 94.
    Bernini G, Carrara D, Bacca A, Carli V, Virdis A, Rugani I, Duranti E, Ghiadoni L, Bernini M, Taddei S (2013) Effect of acute and chronic vitamin D administration on systemic renin angiotensin system in essential hypertensives and controls. J Endocrinol Invest 36(4):216–220.  https://doi.org/10.1007/bf03347275 Google Scholar
  95. 95.
    Ozkan B, Hatun S, Bereket A (2012) Vitamin D intoxication. Turk J Pediatr 54(2):93–98Google Scholar
  96. 96.
    Hu H, Zhang J, Lu Y, Zhang Z, Qin B, Gao H, Wang Y, Zhu J, Wang Q, Zhu Y, Xun Y, Wang S (2017) Association between circulating vitamin D level and urolithiasis: a systematic review and meta-analysis. Nutrients 9(3):E301.  https://doi.org/10.3390/nu9030301 Google Scholar
  97. 97.
    Malihi Z, Wu Z, Stewart AW, Lawes CM, Scragg R (2016) Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr 104(4):1039–1051.  https://doi.org/10.3945/ajcn.116.134981 Google Scholar
  98. 98.
    Leaf DE, Korets R, Taylor EN, Tang J, Asplin JR, Goldfarb DS, Gupta M, Curhan GC (2012) Effect of vitamin D repletion on urinary calcium excretion among kidney stone formers. Clin J Am Soc Nephrol 7(5):829–834.  https://doi.org/10.2215/CJN.11331111 Google Scholar
  99. 99.
    Ferroni MC, Rycyna KJ, Averch TD, Semins MJ (2017) Vitamin D repletion in kidney stone formers: a randomized controlled trial. J Urol 197(4):1079–1083.  https://doi.org/10.1016/j.juro.2016.10.057 Google Scholar
  100. 100.
    Dion M, Ankawi G, Chew B, Paterson R, Sultan N, Hoddinott P, Razvi H (2016) CUA guideline on the evaluation and medical management of the kidney stone patient: 2016 update. Can Urol Assoc J 10(11–12):E347–E358.  https://doi.org/10.5489/cuaj.4218 Google Scholar
  101. 101.
    Pipili C, Oreopoulos DG (2012) Vitamin D status in patients with recurrent kidney stones. Nephron Clin Pract 122(3–4):134–138.  https://doi.org/10.1159/000351377 Google Scholar
  102. 102.
    Girón-prieto MS, Del Carmen Cano-garcía M, Arrabal-polo M, Poyatos-andujar A, Quesada-charneco M, de Haro-Muñoz T, Arias-santiago S, Arrabal-martín M (2016) Analysis of vitamin D deficiency in calcium stone-forming patients. Int Urol Nephrol 48(8):1243–1246.  https://doi.org/10.1007/s11255-016-1290-3 Google Scholar
  103. 103.
    Hashemipour S, Larijani B, Adibi H, Javadi E, Sedaghat M, Pajouhi M, Soltani A, Shafaei AR, Hamidi Z, Fard AR, Hossein-Nezhad A, Booya F (2004) Vitamin D deficiency and causative factors in the population of Tehran. BMC Public Health 4:38.  https://doi.org/10.1186/1471-2458-4-38 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIslamic Republic of Iran

Personalised recommendations