International Urology and Nephrology

, Volume 50, Issue 2, pp 247–255 | Cite as

Anticancer activity of Schiff base–Poloxamer P85 combination against kidney cancer

  • Ayşegül DoğanEmail author
  • Selami Demirci
  • Dilek Telci
  • Serli Canikyan
  • Merve Kongur
  • Bülent Dede
  • Fikrettin Şahin
Urology - Original Paper



Renal cell carcinoma (RCC) accounts for approximately 80% of the primary renal cancers, and current treatment strategies are not sufficient to provide a certain solution. Since there are not many treatment options, interest in discovery of alternative drugs has increased.


In the current study, anticancer activity of a novel heterodinuclear Cu(II)–Mn(II) complex (Schiff base—SB) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (pluronic) P85 was tested against RCC. Cell viability, apoptosis and gene expression analysis were conducted in vitro by using Renca cells.


The results revealed that the SB–P85 combination decreased cell proliferation by increasing the apoptotic gene expressions and apoptosis. Renca-injected BALB/c mice were used to mimic early stage of RCC model. Treatment with SB–P85 combination suppressed tumor formation and growth compared to baseline.


Overall, SB–P85 showed promising anticancer activity against RCC in vitro and in vivo.


Schiff base Pluronic P85 Renal cell carcinoma Chemotherapy 



This study was supported by İstanbul Kalkınma Ajansı (ISTKA) Project (ISTKA/2012/BIL-164) and Yeditepe University.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experimental procedures were approved by Yeditepe University Ethics Committee of Experimental Animal Use and the Research Scientific Committee (1.4.2013- ISTKA-BIL-164).


  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30CrossRefPubMedGoogle Scholar
  2. 2.
    Chauhan A, Semwal DK, Mishra SP, Goyal S, Marathe R, Semwal RB (2016) Combination of mTOR and MAPK ınhibitors—a potential way to treat renal cell carcinoma. Med Sci 4(4):16Google Scholar
  3. 3.
    Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13(3):688–696CrossRefPubMedGoogle Scholar
  4. 4.
    MRCRC Collaborators (1999) Interferon-α and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Lancet 353(9146):14–17CrossRefGoogle Scholar
  5. 5.
    Van Spronsen D, De Weijer K, Mulders P, De Mulder P (2005) Novel treatment strategies in clear-cell metastatic renal cell carcinoma. Anticancer Drugs 16(7):709–717CrossRefPubMedGoogle Scholar
  6. 6.
    Yuan Z-X, Mo J, Zhao G, Shu G, Fu H-L, Zhao W (2016) Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol 7(423):1–15Google Scholar
  7. 7.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134CrossRefPubMedGoogle Scholar
  8. 8.
    Cho YH, Kim MS, Chung HS, Hwang EC (2017) Novel immunotherapy in metastatic renal cell carcinoma. Investig Clin Urol 58(4):220–227CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Prakash A, Adhikari D (2011) Application of Schiff bases and their metal complexes-a review. Int J Chem Tech Res 3(4):1891–1896Google Scholar
  10. 10.
    Brown D, Smith W, Teape J, Lewis A (1980) Antiinflammatory effects of some copper complexes. J Med Chem 23(7):729–734CrossRefPubMedGoogle Scholar
  11. 11.
    Turan-Zitouni G, Sıvacı D, Kaplancıklı Z, Özdemir A (2002) Synthesis and antimicrobial activity of some pyridinyliminothiazoline derivatives. Il Farm 57(7):569–572CrossRefGoogle Scholar
  12. 12.
    Baul TSB, Basu S, de Vos D, Linden A (2009) Amino acetate functionalized Schiff base organotin (IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Investig New Drugs 27(5):419CrossRefGoogle Scholar
  13. 13.
    Duff B, Thangella VR, Creaven BS, Walsh M, Egan DA (2012) Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells. Eur J Pharmacol 689(1):45–55CrossRefPubMedGoogle Scholar
  14. 14.
    Demirci S, Doğan A, Başak N, Telci D, Dede B, Orhan C, Tuzcu M, Şahin K, Şahin N, Özercan İH (2015) A Schiff base derivative for effective treatment of diethylnitrosamine-induced liver cancer in vivo. Anticancer Drugs 26(5):555–564CrossRefPubMedGoogle Scholar
  15. 15.
    Dogan A, Basak N, Demirci S, Telci D, Dede B, Tuzcu M, Ozercan IH, Sahin K, Sahin F (2014) A novel Schiff base derivative for effective treatment of azoxymethane induced colon cancer. Int J Pharm Sci Res 5(8):3544Google Scholar
  16. 16.
    Kabanov AV, Nazarova IR, Astafieva IV, Batrakova EV, Alakhov VY, Yaroslavov AA, Kabanov VA (1995) Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 28(7):2303–2314CrossRefGoogle Scholar
  17. 17.
    Batrakova EV, Han H-Y, Miller DW, Kabanov AV (1998) Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res 15(10):1525–1532CrossRefPubMedGoogle Scholar
  18. 18.
    Dede B, Karipcin F, Cengiz M (2009) Novel homo-and hetero-nuclear copper(II) complexes of tetradentate Schiff bases: synthesis, characterization, solvent-extraction and catalase-like activity studies. J Hazard Mater 163(2):1148–1156CrossRefPubMedGoogle Scholar
  19. 19.
    Demirci S, Doğan A, Karakuş E, Halıcı Z, Topçu A, Demirci E, Sahin F (2015) Boron and poloxamer (F68 and F127) containing hydrogel formulation for burn wound healing. Biol Trace Elem Res 168(1):169–180CrossRefPubMedGoogle Scholar
  20. 20.
    Demirci S, Doğan A, Apdik H, Tuysuz EC, Gulluoglu S, Bayrak OF, Şahin F (2017) Cytoglobin inhibits migration through PI3 K/AKT/mTOR pathway in fibroblast cells. Mol Cell Biochem. PubMedGoogle Scholar
  21. 21.
    Doğan A, Demirci S, Şahin F (2015) In vitro differentiation of human tooth germ stem cells into endothelial-and epithelial-like cells. Cancer Cell Int 39(1):39–103Google Scholar
  22. 22.
    Iguchi M, Matsumoto M, Hojo K, Wada T, Matsuo Y, Arimura A, Abe K (2009) Antitumor efficacy of recombinant human interleukin-2 combined with sorafenib against mouse renal cell carcinoma. Jpn J Clin Oncol 39(5):303–309CrossRefPubMedGoogle Scholar
  23. 23.
    Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154CrossRefPubMedGoogle Scholar
  24. 24.
    Demirci S, Dogan A, Türkmen NB, Telci D, Çaglayan AB, Beker MÇ, Kiliç E, Özkan F, Dede B, Sahin F (2017) Poloxamer P85 increases anticancer activity of Schiff base against prostate cancer in vitro and in vivo. Anticancer Drugs 28(8):869–879CrossRefPubMedGoogle Scholar
  25. 25.
    Demirci S, Doğan A, Türkmen NB, Telci D, Rizvanov AA, Şahin F (2017) Schiff base-Poloxamer P85 combination demonstrates chemotherapeutic effect on prostate cancer cells in vitro. Biomed Pharmacother 86:492–501CrossRefPubMedGoogle Scholar
  26. 26.
    Doğan A, Demirci S, Türkmen NB, Çağlayan AB, Aydın S, Telci D, Kılıç E, Şahin K, Orhan C, Tuzcu M (2016) Schiff base-poloxamer P85 combination prevents prostate cancer progression in C57/Bl6 mice. Prostate 76(15):1454–1463CrossRefPubMedGoogle Scholar
  27. 27.
    Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353(23):2477–2490CrossRefPubMedGoogle Scholar
  28. 28.
    Alexandridis P, Lindman B (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA (2012) Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomed 7:4849Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Ayşegül Doğan
    • 1
    • 2
    Email author
  • Selami Demirci
    • 1
    • 3
  • Dilek Telci
    • 1
  • Serli Canikyan
    • 4
  • Merve Kongur
    • 5
  • Bülent Dede
    • 6
  • Fikrettin Şahin
    • 1
  1. 1.Genetics and Bioengineering Department, Faculty of EngineeringYeditepe UniversityKayisdagi, IstanbulTurkey
  2. 2.National Cancer Instıtute, CDBL, NIHFrederickUSA
  3. 3.National Heart, Lung and Blood Institute (NHLBI), NIHBethesdaUSA
  4. 4.Onkim Stem Cell TechnologiesIstanbulTurkey
  5. 5.Acıbadem Labcell, Stem Cell Laboratory and Umbilical Cord Blood BankIstanbulTurkey
  6. 6.Department of Chemistry, Faculty of Sciences and ArtsSüleyman Demirel UniversityIspartaTurkey

Personalised recommendations