Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling

  • Zhi-Wei Chen
  • Hai-Feng Miu
  • Hui-Ping Wang
  • Zhi-Niu Wu
  • Wen-Juan Wang
  • Yu-Jing Ling
  • Xiao-Hui Xu
  • Hai-Jian Sun
  • Xia Jiang
Nephrology - Original Paper
  • 148 Downloads

Abstract

Chronic kidney disease causes uremia-related endothelial cell dysfunction associated with high risk for cardiovascular diseases. The vascular endothelium is permanently exposed to uraemic toxins including indoxyl sulfate, which provokes endothelial damage in subjects with end-stage renal disease. Pterostilbene (PT) is identified to be homologous derivative of resveratrol and exerts antioxidant and anti-inflammatory actions. However, the effects of PT on uraemic serum-induced endothelial cell damage have not been elucidated. In this study, we investigated the effects and mechanisms of PT on uraemic serum (US)-mediated injury in human umbilical vein endothelial cells (HUVECs). Treatment of US obviously reduced cell viability, inhibited superoxide dismutase activity and catalase activity, suppressed phosphorylated endothelial nitric oxide synthase (eNOS) protein level and eNOS activity, whereas promoted lactate dehydrogenase leakage, increased malondialdehyde, hydrogen peroxide, superoxide anions levels and NAD(P)H activity accompanied with increased nitrative stress and inflammatory response in HUVECs, and these changes were reversed after PT treatment. Under US environment, PT downregulated Kelch-like ECH-associated protein 1 (Keap1) and upregulated nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1) protein levels. Of note, the level of HO-1 was decreased after the transfection of cells with Nrf2-siRNA, and HO-1 inhibitor Snpp abolished the protective effects of PT on HUVECs in response to US. Collectively, our study demonstrated that PT is effective in reducing US-evoked endothelial cell dysfunction via suppression of oxidative/nitrative stress and inflammatory response, which at least partly depended on Keap1/Nrf2/HO-1 signaling pathway.

Keywords

Pterostilbene Uremia Chronic kidney disease Endothelial cell Nrf2 

Notes

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (Grants No. JUSRP11745) and Project funded by China Postdoctoral Science Foundation (Grants No. 2017M611688). We gratefully thank Dr. H.J. Sun for his useful suggestion and help.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sun HJ, Hou B, Wang X, Zhu XX, Li KX, Qiu LY (2016) Endothelial dysfunction and cardiometabolic diseases: role of long non-coding RNAs. Life Sci 167:6–11CrossRefPubMedGoogle Scholar
  2. 2.
    Yamagata K (2017) Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis 16(1):118CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wong BW, Marsch E, Treps L, Baes M, Carmeliet P (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J 36(15):2187–2203CrossRefPubMedGoogle Scholar
  4. 4.
    Behrendt D, Ganz P (2002) Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90(10c):40l–48lCrossRefPubMedGoogle Scholar
  5. 5.
    Higashi Y, Maruhashi T, Noma K, Kihara Y (2014) Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med 24(4):165–169CrossRefPubMedGoogle Scholar
  6. 6.
    Forstermann U (2010) Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 459(6):923–939CrossRefPubMedGoogle Scholar
  7. 7.
    Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM (2007) Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the cardiovascular health study. Circulation 115(18):2390–2397CrossRefPubMedGoogle Scholar
  8. 8.
    Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM (2009) Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120(6):502–509CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sindhu KK (2016) Uremic toxins: some thoughts on acrolein and spermine. Ren Fail 38(10):1755–1758CrossRefPubMedGoogle Scholar
  10. 10.
    Jansen J, Jankowski J, Gajjala PR, Wetzels JFM, Masereeuw R (1979) Disposition and clinical implications of protein-bound uremic toxins. Clin Sci (London, England): 1979 131(14):1631–1647CrossRefGoogle Scholar
  11. 11.
    Garcia-Jerez A, Luengo A, Carracedo J, Ramirez-Chamond R, Rodriguez-Puyol D, Rodriguez-Puyol M, Calleros L (2015) Effect of uraemia on endothelial cell damage is mediated by the integrin linked kinase pathway. J Physiol 593(3):601–618 (discussion 618) CrossRefPubMedGoogle Scholar
  12. 12.
    Wanner C, Amann K, Shoji T (2016) The heart and vascular system in dialysis. Lancet 388(10041):276–284CrossRefPubMedGoogle Scholar
  13. 13.
    Yang Y, Fan C, Wang B, Ma Z, Wang D, Gong B, Di S, Jiang S, Li Y, Li T, Yang Z, Luo E (2017) Pterostilbene attenuates high glucose-induced oxidative injury in hippocampal neuronal cells by activating nuclear factor erythroid 2-related factor 2. Biochem Biophys Acta 1863(4):827–837PubMedGoogle Scholar
  14. 14.
    Xue EX, Lin JP, Zhang Y, Sheng SR, Liu HX, Zhou YL, Xu H (2017) Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway. Oncotarget 8(26):41988–42000PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ma S, Yao S, Tian H, Jiao P, Yang N, Zhu P, Qin S (2017) Pigment epithelium-derived factor alleviates endothelial injury by inhibiting Wnt/beta-catenin pathway. Lipids Health Dis 16(1):31CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhu Y, Zhang YJ, Liu WW, Shi AW, Gu N (2016) Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules 21(8):1033CrossRefGoogle Scholar
  17. 17.
    Sun H, Zhu X, Zhou Y, Cai W, Qiu L (2017) C1q/TNF-Related protein-9 ameliorates Ox-LDL-induced endothelial dysfunction via PGC-1alpha/AMPK-mediated antioxidant enzyme induction. Int J Mol Sci 18(6):1097CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhu X, Zhou Y, Cai W, Sun H, Qiu L (2017) Salusin-beta mediates high glucose-induced endothelial injury via disruption of AMPK signaling pathway. Biochem Biophys Res Commun 491(2):515–521CrossRefPubMedGoogle Scholar
  19. 19.
    Xie F, Cai W, Liu Y, Li Y, Du B, Feng L, Qiu L (2015) Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med 35(1):135–142CrossRefPubMedGoogle Scholar
  20. 20.
    Wang W, Ding XQ, Gu TT, Song L, Li JM, Xue QC, Kong LD (2015) Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radic Biol Med 83:214–226CrossRefPubMedGoogle Scholar
  21. 21.
    Sun HJ, Zhou H, Feng XM, Gao Q, Ding L, Tang CS, Zhu GQ, Zhou YB (2014) Superoxide anions in the paraventricular nucleus mediate cardiac sympathetic afferent reflex in insulin resistance rats. Acta Physiol (Oxf) 212(4):267–282CrossRefGoogle Scholar
  22. 22.
    Sun HJ, Zhang LL, Fan ZD, Chen D, Zhang L, Gao XY, Kang YM, Zhu GQ (2014) Superoxide anions involved in sympathoexcitation and pressor effects of salusin-beta in paraventricular nucleus in hypertensive rats. Acta Physiol (Oxf) 210(3):534–545CrossRefGoogle Scholar
  23. 23.
    Zhang J, Xia L, Zhang F, Zhu D, Xin C, Wang H, Zhang F, Guo X, Lee Y, Zhang L, Wang S, Guo X, Huang C, Gao F, Liu Y, Tao L (2017) A novel mechanism of diabetic vascular endothelial dysfunction: hypoadiponectinemia-induced NLRP3 inflammasome activation. Biochem Biophys Acta 1863(6):1556–1567PubMedGoogle Scholar
  24. 24.
    Zhu D, Wang H, Zhang J, Zhang X, Xin C, Zhang F, Lee Y, Zhang L, Lian K, Yan W, Ma X, Liu Y, Tao L (2015) Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J Mol Cell Cardiol 87:138–147CrossRefPubMedGoogle Scholar
  25. 25.
    Li R, Wang WQ, Zhang H, Yang X, Fan Q, Christopher TA, Lopez BL, Tao L, Goldstein BJ, Gao F, Ma XL (2007) Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am J Physiol Endocrinol Metab 293(6):E1703–E1708CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu W, Yang B, Fu H, Ma L, Liu T, Chai R, Zheng Z, Zhang Q, Li G (2015) Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells. Biochem Biophys Res Commun 458(3):590–595CrossRefPubMedGoogle Scholar
  27. 27.
    Xue L, Xu F, Meng L, Wei S, Wang J, Hao P, Bian Y, Zhang Y, Chen Y (2012) Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett 586(2):137–142CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu X, Zhou Z, Zhang Q, Cai W, Zhou Y, Sun H, Qiu L (2017) Vaccarin administration ameliorates hypertension and cardiovascular remodeling in renovascular hypertensive rats. J Cell Biochem. doi: 10.1002/jcb.26258 Google Scholar
  29. 29.
    Bao MH, Li JM, Luo HQ, Tang L, Lv QL, Li GY, Zhou HH (2016) NF-kappaB-regulated miR-99a modulates endothelial cell inflammation. Mediators Inflamm 2016:5308170CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sun H, Zhu X, Cai W, Qiu L (2017) Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-gamma dependent on PI3K/Akt/mTOR signal pathway. Int J Mol Sci 18(4):844CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Migliori M, Cantaluppi V, Mannari C, Bertelli AA, Medica D, Quercia AD, Navarro V, Scatena A, Giovannini L, Biancone L, Panichi V (2015) Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS ONE 10(4):e0117530CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Carracedo J, Buendia P, Merino A, Soriano S, Esquivias E, Martin-Malo A, Aljama P, Ramirez R (2013) Cellular senescence determines endothelial cell damage induced by uremia. Exp Gerontol 48(8):766–773CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao X, Du C, Yan Z, Shi Y, Duan H, Ren Y (2017) Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am J Nephrol 46(2):131–138CrossRefPubMedGoogle Scholar
  34. 34.
    Tayebati SK, Tomassoni D, Di Cesare Mannelli L, Amenta F (2016) Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats. Clin Exp Hypertens (New York, N.Y.: 1993) 38(1):30–38CrossRefGoogle Scholar
  35. 35.
    Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, Yuan Y, Li Z, Guo Y, Shen Z, Mei X (2017) Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget 8(32):52078–52093PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen JY, Zhu GY, Su XH, Wang R, Liu J, Liao K, Ren R, Li T, Liu L (2017) 7-deacetylgedunin suppresses inflammatory responses through activation of Keap1/Nrf2/HO-1 signaling. Oncotarget 8(33):55051–55063PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kaschina E, Namsolleck P, Unger T (2017) AT2 receptors in cardiovascular and renal diseases. Pharm Res 125(Pt A):39–47CrossRefGoogle Scholar
  38. 38.
    Thomas B, Matsushita K, Abate KH, Al-Aly Z, Arnlov J, Asayama K, Atkins R, Badawi A, Ballew SH, Banerjee A, Barregard L, Barrett-Connor E, Basu S, Bello AK, Bensenor I, Bergstrom J, Bikbov B, Blosser C, Brenner H, Carrero JJ, Chadban S, Cirillo M, Cortinovis M, Courville K, Dandona L, Dandona R, Estep K, Fernandes J, Fischer F, Fox C, Gansevoort RT, Gona PN, Gutierrez OM, Hamidi S, Hanson SW, Himmelfarb J, Jassal SK, Jee SH, Jha V, Jimenez-Corona A, Jonas JB, Kengne AP, Khader Y, Khang YH, Kim YJ, Klein B, Klein R, Kokubo Y, Kolte D, Lee K, Levey AS, Li Y, Lotufo P, El Razek HMA, Mendoza W, Metoki H, Mok Y, Muraki I, Muntner PM, Noda H, Ohkubo T, Ortiz A, Perico N, Polkinghorne K, Al-Radaddi R, Remuzzi G, Roth G, Rothenbacher D, Satoh M, Saum KU, Sawhney M, Schottker B, Shankar A, Shlipak M, Silva DAS, Toyoshima H, Ukwaja K, Umesawa M, Vollset SE, Warnock DG, Werdecker A, Yamagishi K, Yano Y, Yonemoto N, Zaki MES, Naghavi M, Forouzanfar MH, Murray CJL, Coresh J, Vos T (2017) Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol JASN 28(7):2167–2179CrossRefPubMedGoogle Scholar
  39. 39.
    Suresh H, Arun BS, Moger V, Swamy M (2017) Cardiorenal syndrome type 4: a study of cardiovascular diseases in chronic kidney disease. Indian Heart J 69(1):11–16CrossRefGoogle Scholar
  40. 40.
    Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, Berland Y, Brunet P (2004) The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int 65(2):442–451CrossRefPubMedGoogle Scholar
  41. 41.
    Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P (2007) The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost JTH 5(6):1302–1308CrossRefPubMedGoogle Scholar
  42. 42.
    Adelibieke Y, Shimizu H, Saito S, Mironova R, Niwa T (2013) Indoxyl sulfate counteracts endothelial effects of erythropoietin through suppression of Akt phosphorylation. Circ J Off J Jpn Circ Soc 77(5):1326–1336Google Scholar
  43. 43.
    Tumur Z, Niwa T (2009) Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol 29(6):551–557CrossRefPubMedGoogle Scholar
  44. 44.
    Brunet P, Gondouin B, Duval-Sabatier A, Dou L, Cerini C, Dignat-George F, Jourde-Chiche N, Argiles A, Burtey S (2011) Does uremia cause vascular dysfunction? Kidney Blood Press Res 34(4):284–290CrossRefPubMedGoogle Scholar
  45. 45.
    Shen H, Rong H (2015) Pterostilbene impact on retinal endothelial cells under high glucose environment. Int J Clin Exp Pathol 8(10):12589–12594PubMedPubMedCentralGoogle Scholar
  46. 46.
    Helmke A, von Vietinghoff S (2016) Extracellular vesicles as mediators of vascular inflammation in kidney disease. World J Nephrol 5(2):125–138CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu J, Fan C, Yu L, Yang Y, Jiang S, Ma Z, Hu W, Li T, Yang Z, Tian T, Duan W, Yu S (2016) Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine 77:88–97CrossRefPubMedGoogle Scholar
  48. 48.
    Gliemann L, Nyberg M, Hellsten Y (2014) Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity? Free Radic Res 48(1):71–83CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng L, Jin Z, Zhao R, Ren K, Deng C, Yu S (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420–10428PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yang SP, Yang XZ, Cao GP (2015) Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells. Mol Med Rep 12(1):1145–1150CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu C, Dong Y, Liu H, Ren H, Cui Z (2017) Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomed Pharmacother 88:124–133CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Zhi-Wei Chen
    • 1
  • Hai-Feng Miu
    • 1
  • Hui-Ping Wang
    • 2
  • Zhi-Niu Wu
    • 2
  • Wen-Juan Wang
    • 1
  • Yu-Jing Ling
    • 2
  • Xiao-Hui Xu
    • 2
  • Hai-Jian Sun
    • 2
  • Xia Jiang
    • 1
  1. 1.Department of Nephrology, Center of Blood PurificationThe Second People’s Hospital of NantongNantongPeople’s Republic of China
  2. 2.Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations