International Urology and Nephrology

, Volume 49, Issue 5, pp 895–901 | Cite as

Osteoprotegerin and uremic osteoporosis in chronic hemodialysis patients

  • Diana Moldovan
  • Crina Rusu
  • Alina Potra
  • Ioan Moldovan
  • Ioan Mihai Patiu
  • Mirela Gherman-Caprioara
  • Ina Maria Kacso
Nephrology - Original Paper



Osteoprotegerin (OPG) is a powerful inhibitor of osteoclast activity, and it plays an important role in bone metabolism. In hemodialysis (HD) patients, the relationship between OPG and bone mineral density (BMD) is important, but remains unclear yet. The study objective was to assess the OPG role related to uremic osteoporosis in HD patients.


This cross-sectional study has been realized on a cohort of 63 chronic HD patients. Inclusion criteria: elderly prevalent HD patients with an age over 55 years old. Exclusion criteria: previous bone disease or previous renal transplant; neoplasia; parathyroidectomy, hormone replacement therapy. The data regarding demographical and clinical characteristics, including treatments for mineral and cardiovascular complications, were recorded. Serum OPG and mineral markers levels were measured. BMD was assessed by calcaneus quantitative ultrasound; it measured broadband ultrasound attenuation, speed of sound (SOS) and stiffness index (STI).


The high OPG levels were associated with higher bone mineral density (OPG–SOS P = 0.003; R = 0.37; OPG–STI P = 0.03; R = 0.28). Malnutrition, anemia and advanced age correlated with bone demineralization. Males had higher bone density parameters than females. In patients treated with vitamin D (P = 0.005), the BMD was increased comparing to patients without these treatments.


OPG levels had directly correlated with bone mineral density parameters. Our study further confirms the critical role of OPG in the pathogenesis of uremic osteoporosis in ESRD. Whether the increased circulant OPG protect against bone loss in patients undergoing HD remains to be established.


Osteoprotegerin Osteoporosis Hemodialysis 


Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.


  1. 1.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int Suppl 113:S1–S130Google Scholar
  2. 2.
    National Institutes of Health (2001) Consensus development panel on osteoporosis prevention D, therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  3. 3.
    National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis (2014). (Accessed on 16 Oct 2016)
  4. 4.
    Kanis JA on behalf of the World Health Organization Scientific Group (2008) Assessment of osteoporosis at the primary health-care. In: Technical Report. UK: WHO Collaborative Centre, University of SheffieldGoogle Scholar
  5. 5.
    West SL, Patel P, Jamal SA (2015) How to predict and treat increased fracture risk in chronic kidney disease. J Intern Med 278(1):19–28CrossRefPubMedGoogle Scholar
  6. 6.
    Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Fried LF (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7(7):1130–1136CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ureña P, Bernard-Poenaru O, Ostertag A et al (2003) Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol Dial Transplant 18:2325–2331CrossRefPubMedGoogle Scholar
  8. 8.
    Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y (2011) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transplant 27:345–351CrossRefPubMedGoogle Scholar
  9. 9.
    Khaw KT, Reeve J, Luben R et al (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197CrossRefPubMedGoogle Scholar
  10. 10.
    Hodson J, Marsh J (2003) Quantitative ultrasound and risk factor enquiry as predictors of postmenopausal osteoporosis: comparative study in primary care. BMJ 326:1250CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Glüer CC, Barkmann R, Blenk T, Stewart A, Kolta S, Finigan J, Graeff C, Gablentz J, Eastell R, Reid DM, Roux C, Felsenberg D (2007) Quantitative ultrasound predicts incident vertebral and hip fractures at least as strongly as DXA: the OPUS study. J Bone Miner Res 22(Suppl 1):1075Google Scholar
  12. 12.
    Hans D, Durosier C, Kans JA, Johansson H, Schott-Pethelaz AM, Krieg MA (2008) Assessment of the 10- year probability of osteoporotic hip fracture combining clinical risk factors and heel bone ultrasound: the EPISEM prospective cohort of 12,958 elderly women. J Bone Miner Res 23(7):1045–1051CrossRefPubMedGoogle Scholar
  13. 13.
    Bondor C, Kacso Potra A, Moldovan D et al (2015) Relationship of adiponectin to markers of oxidative stress in type 2 diabetic patients: influence of incipient diabetes-associated kidney disease. Int Urol Nephrol 47(7):1173–1180CrossRefPubMedGoogle Scholar
  14. 14.
    Min H, Morony S, Sarosi I et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Doumouchtsis KK, Kostakis AI, Doumouchtsis SK et al (2008) Associations between osteoprotegerin and femoral neck BMD in hemodialysis patients. J Bone Miner Metab 26:66–72CrossRefPubMedGoogle Scholar
  16. 16.
    Lewiecki EM (2009) Denosumab in postmenopausal osteoporosis: what the clinician needs to know. Ther Adv Musculoskelet Dis 1(1):13–26CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756CrossRefPubMedGoogle Scholar
  18. 18.
    Ersoy FF (2007) Osteoporosis in the elderly with chronic kidney disease. Int Urol Nephrol 39(1):321–331CrossRefPubMedGoogle Scholar
  19. 19.
    McCloskey EV, Kanis JA, Odén A, Harvey NC, Bauer D, González-Macias J, Johansson H (2015) Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int 26(7):1979–1987CrossRefPubMedGoogle Scholar
  20. 20.
    Barreto FC, Barreto DV, Moyses RM et al (2006) Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem. Kidney Int 69(10):1852–1857CrossRefPubMedGoogle Scholar
  21. 21.
    Kuo CW, Ho SY, Chang TH et al (2010) Quantitative ultrasound of the calcaneus in hemodialysis patients. Ultrasound Med Biol 36(4):589–594CrossRefPubMedGoogle Scholar
  22. 22.
    Arici M, Erturk H, Altun B et al (2000) Bone mineral density in haemodialysis patients: a comparative study of dual-energy X-ray absorptiometry and quantitative ultrasound. Nephrol Dial Transplant 15:1847–1851CrossRefPubMedGoogle Scholar
  23. 23.
    Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Barquero LR, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Scott AM, Lewiecki EM, Hans D (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11(1):163–187CrossRefPubMedGoogle Scholar
  24. 24.
    Guglielmi G, Adams J, Link TM (2009) Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 19(8):1837–1848CrossRefPubMedGoogle Scholar
  25. 25.
    Moayyeri A, Kaptoge S, Dalzell N et al (2009) Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 24(7):1319–1325CrossRefPubMedGoogle Scholar
  26. 26.
    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30(5):913–919CrossRefPubMedGoogle Scholar
  27. 27.
    Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) osteoporotic fractures in men (MrOS) research group. Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18(6):771–777CrossRefPubMedGoogle Scholar
  28. 28.
    Bucur RC, Panjwani DD, Turner L, Rader T, West SL, Jamal SA (2015) Low bone mineral density and fractures in stages 3–5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26:449–458CrossRefPubMedGoogle Scholar
  29. 29.
    Demir P, Erdenen F, Aral H et al (2016) Serum osteoprotegerin levels related with cardiovascular risk factors in chronic kidney disease. J Clin Lab Anal 30(6):811–817CrossRefPubMedGoogle Scholar
  30. 30.
    Bernardi S, Fabris B, Thomas M et al (2014) Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Mol Cell Endocrinol 394(1):13–20CrossRefPubMedGoogle Scholar
  31. 31.
    Nakashima A, Yorioka N, Doi S et al (2006) Osteoprotegerin and bone mineral density in hemodialysis patients. Osteoporosis Int 17(6):841–846CrossRefGoogle Scholar
  32. 32.
    Avila-Diaz M, Prado C, Ventura M et al (2010) Vitamin D receptor gene, biochemical bone markers and bone mineral density in Mexican women on dialysis. Nephrol Dial Transplant 25(7):2259–2265CrossRefGoogle Scholar
  33. 33.
    Wu WT, Lee RP, Wang CH et al (2010) The association of serum osteoprotegerin and osteoporosis in postmenopausal hemodialysis patients: a pilot study. J Women’s Health 19(4):785–790CrossRefGoogle Scholar
  34. 34.
    Yilmaz MI, Siriopol D, Saglam M, et al (2016) Osteoprotegerin in chronic kidney disease: associations with vascular damage and cardiovascular events. Calcif Tissue Int 99(2):121–130CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JE, Kim HJ, Moon SJ et al (2013) Serum osteoprotegerin is associated with vascular stiffness and the onset of new cardiovascular events in hemodialysis patients. Korean J Intern Med 28(6):668–677CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moldovan D, Moldovan I, Rusu C et al (2011) Vascular calcifications and renal osteodystrophy in chronic hemodialysis patients: what is the relationship between them? Internat Urol Nephrol 43(4):1179–1186CrossRefGoogle Scholar
  37. 37.
    Nascimento MM, Hayashi SY, Riella MC, Lindholm B (2014) Elevated levels of plasma osteoprotegerin are associated with all-cause mortality risk and atherosclerosis in patients with stages 3 to 5 chronic kidney disease. Braz J Med Biol Res 47(11):995–1002CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jamal SA, Ljunggren O, Stehman-Breen C et al (2011) Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res 26(8):1829–1835CrossRefPubMedGoogle Scholar
  39. 39.
    Block GA, Bone HG, Fang L et al (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 27(7):1471–1479CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schipper LG, Fleuren HW, van den Bergh JP, Meinardi JR, Veldman BA, Kramers C (2015) Treatment of osteoporosis in renal insufficiency. Clin Rheumatol 34(8):1341–1345CrossRefPubMedGoogle Scholar
  41. 41.
    Hayashi T, Joki N, Tanaka Y, Iwasaki M, Kubo S, Asakawa T, Hase H (2015) The FRAX as a predictor of mortality in Japanese incident hemodialysis patients: an observational, follow-up study. J Bone Mineral Metab 33(6):674–683CrossRefGoogle Scholar
  42. 42.
    Castillo RF, de la Rosa RJ (2009) Relation between body mass index and bone mineral density among haemodialysis patients with chronic kidney disease. J Ren Care 35(Suppl 1):57–64CrossRefPubMedGoogle Scholar
  43. 43.
    Pluskiewicz W, Zwiec J, Gumprecht J et al (2007) Quantitative ultrasound of phalanges of adults with end-stage renal disease or who have undergone renal transplantation. Ultrasound Med Biol 33(9):1353–1361CrossRefPubMedGoogle Scholar
  44. 44.
    Jamal SA, Nickolas TL (2015) Bone imaging and fracture risk assessment in kidney disease. Curr Osteoporos Rep 3(3):166–172CrossRefGoogle Scholar
  45. 45.
    Kazama JJ, Matsuo K, Iwasaki Y, Fukagawa M (2015) Chronic kidney disease and bone metabolism. J Bone Miner Metab 33(3):245–252CrossRefPubMedGoogle Scholar
  46. 46.
    Pérez-Sáez MJ, Prieto-Alhambra D, Barrios C, Crespo M, Redondo D, Nogués X, Pascual J (2015) Increased hip fracture and mortality in chronic kidney disease individuals: the importance of competing risks. Bone 73:154–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Diana Moldovan
    • 1
    • 4
  • Crina Rusu
    • 1
  • Alina Potra
    • 1
  • Ioan Moldovan
    • 2
  • Ioan Mihai Patiu
    • 3
  • Mirela Gherman-Caprioara
    • 1
  • Ina Maria Kacso
    • 1
  1. 1.Department of NephrologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj-NapocaRomania
  2. 2.Military Hospital Cluj-NapocaCluj-NapocaRomania
  3. 3.Nefromed Dialysis Center Cluj-NapocaCluj-NapocaRomania
  4. 4.Nephrology and Dialysis ClinicEmergency County Hospital, „Mihai Manasia”Cluj-NapocaRomania

Personalised recommendations