International Urology and Nephrology

, Volume 49, Issue 4, pp 597–605 | Cite as

Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis

  • Alessandro PrudenteEmail author
  • Wágner José Favaro
  • Leonardo Oliveira Reis
  • Cássio Luis Zanettini Riccetto
Urology – Original Paper



To evaluate the effect of implanted S-nitrosoglutathione (GSNO) coating polypropylene mesh in foreign-body response of rats.


Thirty female rats underwent to subcutaneous implant of five polypropylene (PP) fragments: uncoated PP (control); PP polyvinylalcohol (PVA) coated and PP PVA + GSNO (1, 10 and 70 mMol) coated. After euthanasia (4 and 30 days), eight slides were prepared from each animal: hematoxylin–eosin (inflammatory response); unstained (birefringence collagen evaluation); TUNEL technique (apoptosis); and five for immunohistochemical processing: CD-31 (angiogenesis), IL-1 and TNF-α (proinflammatory cytokynes), iNOS (NO synthesis) and MMP-2 (collagen metabolism). The inflammation area, birefringence index, apoptotic index, immunoreactivity and vessel density were objectively measured.


Inflammatory reaction area at 4 days was 11.3, 15.2, 25.1, 17.1 and 19.3% of pure PP, PVA, GSNO 1, 10 and 70 mM, respectively, p = 0.0006 (PP × Others). At 30 days lower inflammatory area was observed in GSNO 10 and 70 mM compared to pure PP (5.3, 5.2 and 11.1%, respectively, p = 0.0001). Vessel density was higher for GSNO 1 mM (25.5%) compared to pure PP (19.6%) at 30 days only, p = 0.0081. Apoptotic index at 4 days was lower for GSNO 1 mM (49.3%) than pure PVA (60.6%), p = 0.0124. GSNO 10 and 70 mM reduced their apoptotic index at 30 days compared to 4 days (49.9 vs. 36.9 and 59.1 vs. 47.5%, respectively, p = 0.0397). Birefringence index, IL-1, TNF, MMP-2 and iNOS were not different.


Depending on concentrations, GSNO can increase angiogenesis, reduce inflammation and apoptosis compared to pure PP, without impact on cytokine, collagen organization/metabolism and endogenous NO synthesis.


Host versus graft reaction Nitric oxide Pelvic organ prolapse Polypropylenes Surgical mesh 



This study was funded by Sao Paulo Research Foundation (Grant: 2011/11522-2).

Author contribution

AP contributed to conception and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript, statistical analysis, obtaining funding and technical support. WJF contributed to conception and design, acquisition of data, analysis and interpretation of data, critical revision of the manuscript and technical and material support. LOR contributed to conception and design, analysis and interpretation of data, drafting of the manuscript and critical revision of the manuscript. CLZR contributed to conception and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript, statistical analysis, obtaining funding, technical support and supervision.

Compliance with ethical standards

Conflict of interest


Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This study has received approval by the Ethics Committee for Animal Experiments (CEEA-IB-UNICAMP) of the University of Campinas (Protocol: 2400-1).

Supplementary material

11255_2017_1520_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 98 kb)


  1. 1.
    Wu JM, Matthews CA, Conover MM et al (2014) Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol 123:1201–1206. doi: 10.1097/AOG.0000000000000286 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Deval B, Haab F (2003) Whatʼs new in prolapse surgery? Curr Opin Urol 13:315–323. doi: 10.1097/00042307-200307000-00008 CrossRefPubMedGoogle Scholar
  3. 3.
    Zeplin PHP, Larena-Avellaneda AA, Jordan MM et al (2010) Phosphorylcholine-coated silicone implants: effect on inflammatory response and fibrous capsule formation. Ann Plast Surg 65:560–564. doi: 10.1097/SAP.0b013e3181d6e326 CrossRefPubMedGoogle Scholar
  4. 4.
    Baessler K, Maher CF (2006) Mesh augmentation during pelvic-floor reconstructive surgery: risks and benefits. Curr Opin Obstet Gynecol 18:560–566. doi: 10.1097/01.gco.0000242961.48114.b0 CrossRefPubMedGoogle Scholar
  5. 5.
    Prudente A, Riccetto CLZ, de Simões MMSG et al (2013) Impregnation of implantable polypropylene mesh with S-nitrosoglutathione-loaded poly(vinyl alcohol). Colloids Surf B Biointerfaces 108:178–184. doi: 10.1016/j.colsurfb.2013.02.018 CrossRefPubMedGoogle Scholar
  6. 6.
    Andreollo NA, Santos EFD, Araújo MR, Lopes LR (2012) Idade dos ratos versus idade humana: qual é a relação? Arq Bras Cir Dig (São Paulo) 25:49–51. doi: 10.1590/S0102-67202012000100011 CrossRefGoogle Scholar
  7. 7.
    Dias FGF, Prudente A, Siniscalchi RT et al (2015) Can highly purified collagen coating modulate polypropylene mesh immune-inflammatory and fibroblastic reactions? Immunohistochemical analysis in a rat model. Int Urogynecol J 26:569–576. doi: 10.1007/s00192-014-2529-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Moretti AIS, Pinto FJPS, Cury V et al (2012) Nitric oxide modulates metalloproteinase-2, collagen deposition and adhesion rate after polypropylene mesh implantation in the intra-abdominal wall. Acta Biomater 8:108–115. doi: 10.1016/j.actbio.2011.08.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Junge K, Binnebösel M, Rosch R et al (2009) Impact of proinflammatory cytokine knockout on mesh integration. J Invest Surg 22:256–262. doi: 10.1080/08941930802713092 CrossRefPubMedGoogle Scholar
  10. 10.
    Faulk DM, Londono R, Wolf MT et al (2014) ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomater 35:8585–8595. doi: 10.1016/j.biomaterials.2014.06.057 CrossRefGoogle Scholar
  11. 11.
    Gerullis H, Eimer C, Ramon A et al (2011) 787 Improved biocompatibility of meshes used for hernia, incontinence and organ prolapse repair by plasma coating—results of in vitro and in vivo studies. J Urol 185:e317–e317. doi: 10.1016/j.juro.2011.02.605 CrossRefGoogle Scholar
  12. 12.
    Siniscalchi RT, Melo M, Palma PCR et al (2013) Highly purified collagen coating enhances tissue adherence and integration properties of monofilament polypropylene meshes. Int Urogynecol J 24:1747–1754. doi: 10.1007/s00192-013-2109-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Huffaker RK, Muir TW, Rao A et al (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198:582.e1–582.e7. doi: 10.1016/j.ajog.2007.12.029 CrossRefGoogle Scholar
  14. 14.
    Pierce LM, Asarias JR, Nguyen PT et al (2011) Inflammatory cytokine and matrix metalloproteinase expression induced by collagen-coated and uncoated polypropylene meshes in a rat model. YMOB. doi: 10.1016/j.ajog.2011.02.045 Google Scholar
  15. 15.
    Arbos MA, Ferrando JM, Quiles MT et al (2006) Improved surgical mesh integration into the rat abdominal wall with arginine administration. Biomater 27:758–768. doi: 10.1016/j.biomaterials.2005.06.027 CrossRefGoogle Scholar
  16. 16.
    Pierce LM, Rao A, Baumann SS et al (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. YMOB 200:546–548. doi: 10.1016/j.ajog.2008.12.040 Google Scholar
  17. 17.
    Voskerician G, Jin J, White MF et al (2010) Effect of biomaterial design criteria on the performance of surgical meshes for abdominal hernia repair: a pre-clinical evaluation in a chronic rat model. J Mater Sci Mater Med 21:1989–1995. doi: 10.1007/s10856-010-4037-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Pierce LM, Grunlan MA, Hou Y et al (2009) Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. YMOB 200:549.e1–549.e8. doi: 10.1016/j.ajog.2008.12.041 Google Scholar
  19. 19.
    Pereira-lucena CG, Neto RA, de Rezende DT et al (2014) Early and late postoperative inflammatory and collagen deposition responses in three different meshes: an experimental study in rats. Hernia 18:563–570. doi: 10.1007/s10029-013-1206-4 PubMedGoogle Scholar
  20. 20.
    Zogbi L, Trindade EN, Trindade MRM (2013) Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes. Hernia 17:765–772. doi: 10.1007/s10029-013-1046-2 CrossRefPubMedGoogle Scholar
  21. 21.
    Cervigni M, Natale F, La Penna C et al (2011) Collagen-coated polypropylene mesh in vaginal prolapse surgery: an observational study. Eur J Obstet Gynecol 156:223–227. doi: 10.1016/j.ejogrb.2011.01.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Medical SciencesUniversity of CampinasCampinasBrazil
  2. 2.Institute of BiologyUniversity of CampinasCampinasBrazil
  3. 3.Pontifical Catholic University of Campinas (PUC-Campinas)CampinasBrazil
  4. 4.Porto VelhoBrazil

Personalised recommendations