International Urology and Nephrology

, Volume 48, Issue 12, pp 1951–1960 | Cite as

Transplantation of mature adipocyte-derived dedifferentiated fat cells for the treatment of vesicoureteral reflux in a rat model

  • Yuichiro Ikado
  • Daisuke Obinata
  • Taro MatsumotoEmail author
  • Yasutaka Murata
  • Koichiro Kano
  • Noboru Fukuda
  • Kenya Yamaguchi
  • Satoru Takahashi
Urology - Original Paper



Autologous cells potentially provide an ideal injectable substance for management in vesicoureteral reflux (VUR). The aim of this study is to examine the effects of mature adipocyte-derived dedifferentiated fat (DFAT) cell transplantation on VUR in a rat bladder pressurization-induced VUR model.


To create VUR, Sprague–Dawley rats underwent urethral clamping and placement of cystostomy followed by intravesical pressurization. Rat DFAT cells (1 × 106 cells, DFAT group, n = 5) or saline (control group, n = 5) was then injected into the bilateral vesicoureteral junctions. Two weeks later, VUR grade was evaluated on cystography. The number of apoptotic cells in the renal pelvic urothelium, the ureteral inner/outer diameter ratio and the area of connective tissue in the posterior bladder wall were measured.


The reflux grade in the DFAT group was significantly lower than that in the control group. The number of apoptotic cells in the renal pelvic urothelium, ureteral inner/outer diameter ratio and connective tissue area in DFAT group were significantly lower in comparison with the control group.


DFAT cell transplantation improved VUR and exerted nephroprotective effects in a rat VUR model.


Adipocyte Adult stem cell Cell therapy Mesenchymal stem cell Regenerative medicine 



This research was supported by JSPS KAKENHI Grant Number 26293170, by JSPS Program for Creating Start-ups from Advanced Research and Technology (START Program, ST261006IP) and by MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1411018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practical at which the studies were conducted.


  1. 1.
    Cooper CS (2009) Diagnosis and management of vesicoureteral reflux in children. Nat Rev Urol 6:481–489. doi: 10.1038/nrurol.2009.150 CrossRefPubMedGoogle Scholar
  2. 2.
    Peters CA, Skoog SJ, Arant BS Jr, Copp HL, Elder JS, Hudson RG, Khoury AE, Lorenzo AJ, Pohl HG, Shapiro E, Snodgrass WT, Diaz M (2010) Summary of the AUA guideline on management of primary vesicoureteral reflux in children. J Urol 184:1134–1144. doi: 10.1016/j.juro.2010.05.065 CrossRefPubMedGoogle Scholar
  3. 3.
    Cendron M, DeVore DP, Connolly R, Sant GR, Ucci A, Calahan R, Klauber GT (1995) The biological behavior of autologous collagen injected into the rabbit bladder. J Urol 154:808–811CrossRefPubMedGoogle Scholar
  4. 4.
    Walker RD, Wilson J, Clark AE (1992) Injectable bioglass as a potential substitute for injectable polytetrafluoroethylene. J Urol 148:645–647PubMedGoogle Scholar
  5. 5.
    Kirsch AJ, Perez-Brayfield M, Smith EA, Scherz HC (2004) The modified sting procedure to correct vesicoureteral reflux: improved results with submucosal implantation within the intramural ureter. J Urol 171:2413–2416CrossRefPubMedGoogle Scholar
  6. 6.
    Stenberg A, Lackgren G (1995) A new bioimplant for the endoscopic treatment of vesicoureteral reflux: experimental and short-term clinical results. J Urol 154:800–803CrossRefPubMedGoogle Scholar
  7. 7.
    Routh JC, Reinberg Y, Ashley RA, Inman BA, Wolpert JJ, Vandersteen DR, Husmann DA, Kramer SA (2007) Multivariate comparison of the efficacy of intraureteral versus subtrigonal techniques of dextranomer/hyaluronic acid injection. J Urol 178:1702–1706. doi: 10.1016/j.juro.2007.03.174 CrossRefPubMedGoogle Scholar
  8. 8.
    Lee EK, Gatti JM, Demarco RT, Murphy JP (2009) Long-term followup of dextranomer/hyaluronic acid injection for vesicoureteral reflux: late failure warrants continued followup. J Urol 181:1869–1875. doi: 10.1016/j.juro.2008.12.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Nelson CP, Chow JS (2008) Dextranomer/hyaluronic acid copolymer (Deflux) implants mimicking distal ureteral calculi on CT. Pediatr Radiol 38:104–106. doi: 10.1007/s00247-007-0613-z CrossRefPubMedGoogle Scholar
  10. 10.
    Noe HN (2008) Calcification in a Deflux bleb thought to be a ureteral calculus in a child. J Pediatr Urol 4:88–89. doi: 10.1016/j.jpurol.2007.02.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Gargollo PC, Paltiel HJ, Rosoklija I, Diamond DA (2009) Mound calcification after endoscopic treatment of vesicoureteral reflux with autologous chondrocytes: A normal variant of mound appearance? J Urol 181:2702–2707. doi: 10.1016/j.juro.2009.02.053 CrossRefPubMedGoogle Scholar
  12. 12.
    Roche R, Festy F, Fritel X (2010) Stem cells for stress urinary incontinence: the adipose promise. J Cell Mol Med 14:135–142. doi: 10.1111/j.1582-4934.2009.00915.x CrossRefPubMedGoogle Scholar
  13. 13.
    Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Colleselli D, Frauscher F, Ulmer H, Fussenegger M, Bartsch G, Strasser H (2007) Autologous myoblasts and fibroblasts for female stress incontinence: a 1-year follow-up in 123 patients. BJU Int 100:1081–1085. doi: 10.1111/j.1464-410X.2007.07119.x PubMedGoogle Scholar
  14. 14.
    Mitterberger M, Marksteiner R, Schwaiger W, Klima G, Schwentner C, Muller T, Bartsch G, Radmayr C, Strasser H, Oswald J (2008) Can autologous myoblasts be used as a potential bulking agent? BJU Int 102:1731–1736. doi: 10.1111/j.1464-410X.2008.07892.x CrossRefPubMedGoogle Scholar
  15. 15.
    Lin G, Wang G, Banie L, Ning H, Shindel AW, Fandel TM, Lue TF, Lin CS (2010) Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12:88–95CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sugihara H, Yonemitsu N, Miyabara S, Toda S (1987) Proliferation of unilocular fat cells in the primary culture. J Lipid Res 28:1038–1045PubMedGoogle Scholar
  17. 17.
    Matsumoto T, Schiller P, Dieterich LC, Bahram F, Iribe Y, Hellman U, Wikner C, Chan G, Claesson-Welsh L, Dimberg A (2008) Ninein is expressed in the cytoplasm of angiogenic tip-cells and regulates tubular morphogenesis of endothelial cells. Arterioscler Thromb Vasc Biol 28:2123–2130CrossRefPubMedGoogle Scholar
  18. 18.
    Vercesi LA, Constantinou CE (1986) Pressure evaluation of the antireflux ability of the rat ureterovesical junction. Urol Int 41:192–195CrossRefPubMedGoogle Scholar
  19. 19.
    Hannerz L, Wikstad I, Broberger O, Aperia A (1983) Influence of diuresis on the degree of vesicoureteral reflux. An experimental investigation in rats. Acta Radiol Diagn 24:395–399CrossRefGoogle Scholar
  20. 20.
    Guvel S, Kilinc F, Kayaselcuk F, Egilmez T, Ozkardes H (2005) Sterile vesicoureteral reflux decreases tubular cell apoptosis in rat kidney. Urology 65:1244–1248. doi: 10.1016/j.urology.2005.01.033 CrossRefPubMedGoogle Scholar
  21. 21.
    Obinata D, Matsumoto T, Ikado Y, Sakuma T, Kano K, Fukuda N, Yamaguchi K, Mugishima H, Takahashi S (2011) Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol 18:827–834. doi: 10.1111/j.1442-2042.2011.02865.x CrossRefPubMedGoogle Scholar
  22. 22.
    Okur H, Kose O, Kula M, Ozturk F, Muhtaroglu S, Sumerkan B (2003) The role of infection and free oxygen radical damage in reflux nephropathy: an experimental study. J Urol 169:1874–1877. doi: 10.1097/01.ju.0000058885.86030.c0 CrossRefPubMedGoogle Scholar
  23. 23.
    Baek M, Paick SH, Jeong SJ, Hong SK, Kim SW, Choi H (2010) Urodynamic and histological changes in a sterile rabbit vesicoureteral reflux model. J Korean Med Sci 25:1352–1358. doi: 10.3346/jkms.2010.25.9.1352 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sencan A, Vatansever S, Yilmaz O, Genc A, Serter S, Gumuser G, Kurutepe S, Pekindil G, Gunsar C, Mir E (2008) Early renal parenchymal histological changes in an experimental model of vesico-ureteral reflux and the role of apoptosis. Scand J Urol Nephrol 42:213–219. doi: 10.1080/00365590701701632 CrossRefPubMedGoogle Scholar
  25. 25.
    Kilincaslan H, Gundogdu G, Terzi EH, Ozturk H, Firat T, Tosun M (2013) Carbon dioxide insufflation causes upper urinary tract injury in the early period of an experimental vesicoureteral reflux model. Pediatr Surg Int 29:1311–1320. doi: 10.1007/s00383-013-3410-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB, Vacanti CA (1993) Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 150:745–747PubMedGoogle Scholar
  27. 27.
    Diamond DA, Caldamone AA (1999) Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol 162:1185–1188CrossRefPubMedGoogle Scholar
  28. 28.
    Caldamone AA, Diamond DA (2001) Long-term results of the endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes. J Urol 165:2224–2227CrossRefPubMedGoogle Scholar
  29. 29.
    Skoog SJ, Belman AB, Majd M (1987) A nonsurgical approach to the management of primary vesicoureteral reflux. J Urol 138:941–946PubMedGoogle Scholar
  30. 30.
    Caione P, Ciofetta G, Collura G, Morano S, Capozza N (2004) Renal damage in vesico-ureteric reflux. BJU Int 93:591–595CrossRefPubMedGoogle Scholar
  31. 31.
    Szlyk GR, Williams SB, Majd M, Belman AB, Rushton HG (2003) Incidence of new renal parenchymal inflammatory changes following breakthrough urinary tract infection in patients with vesicoureteral reflux treated with antibiotic prophylaxis: evaluation by 99MTechnetium dimercapto-succinic acid renal scan. J Urol 170:1566–1569. doi: 10.1097/01.ju.0000085962.68246.ce CrossRefPubMedGoogle Scholar
  32. 32.
    Soejima K, Kashimura T, Asami T, Kazama T, Matsumoto T, Nakazawa H (2015) Effects of mature adipocyte-derived dedifferentiated fat (DFAT) cells on generation and vascularisation of dermis-like tissue after artificial dermis grafting. J Plast Surg Hand Surg 49:25–31. doi: 10.3109/2000656x.2014.920712 CrossRefPubMedGoogle Scholar
  33. 33.
    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kikuta S, Tanaka N, Kazama T, Kazama M, Kano K, Ryu J, Tokuhashi Y, Matsumoto T (2013) Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis. Tissue Eng A 19:1792–1802. doi: 10.1089/ten.TEA.2012.0380 CrossRefGoogle Scholar
  35. 35.
    Sun YB, Qu X, Caruana G, Li J (2016) The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. doi: 10.1016/j.diff.2016.05.008 PubMedGoogle Scholar
  36. 36.
    Sakuma T, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K, Yoshida T, Takahashi S, Mugishima H (2009) Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol 182:355–365CrossRefPubMedGoogle Scholar
  37. 37.
    Hsiao AY, Okitsu T, Onoe H, Kiyosawa M, Teramae H, Iwanaga S, Kazama T, Matsumoto T, Takeuchi S (2015) Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology. PLoS ONE 10:e0119010. doi: 10.1371/journal.pone.0119010 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kono S, Kazama T, Kano K, Harada K, Uechi M, Matsumoto T (2014) Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J 199:88–96. doi: 10.1016/j.tvjl.2013.10.033 CrossRefPubMedGoogle Scholar
  39. 39.
    Murawski IJ, Myburgh DB, Favor J, Gupta IR (2007) Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am J Physiol Renal Physiol 293:F1736–F1745. doi: 10.1152/ajprenal.00221.2007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of UrologyNihon University School of MedicineTokyoJapan
  2. 2.Division of Cell Regeneration and Transplantation, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
  3. 3.Laboratory of Cell and Tissue Biology, College of Bioresource ScienceNihon UniversityFujisawaJapan
  4. 4.Advanced Medicine and Advanced Research Institute of Sciences and HumanitiesNihon UniversityTokyoJapan

Personalised recommendations