Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Urinary L-FABP as a marker of vesicoureteral reflux in children: could it also have a protective effect on the kidney?

  • 198 Accesses

  • 1 Citations

Abstract

Purpose

Liver-type fatty acid-binding protein is a small cytoplasmic protein which is expressed in the human renal proximal tubular epithelium and synthesized in response to renal tubular injury. The aim of the present study was to investigate the importance of urinary liver-type fatty acid-binding protein levels in children who diagnosed with vesicoureteral reflux.

Methods

Fifty-six patients with vesicoureteral reflux and 51 healthy controls were enrolled to the study. The cases were divided into three groups as follows: group A—the controls, group B—the patients who had renal parenchymal scarring and group C—the patients who had no scarring. Urinary liver-type fatty acid-binding protein was measured by enzyme-linked immunosorbent assay method. Creatinine was measured by modified Jaffe method, protein was measured by turbidimetric method, and urine density was determined by using the “falling drop” procedure.

Results

Urinary liver-type fatty acid-binding protein and urinary liver-type fatty acid-binding protein/creatinine levels were significantly higher in the whole patient group than in the controls (p = 0.016, 0.006). Significant differences were also determined by comparing the three groups (p = 0.015, 0.014), and those levels were found as significantly higher in group C.

Conclusion

Urinary liver-type fatty acid-binding protein was considered to be helpful for the diagnosis of vesicoureteral reflux, and also it might contribute to understand the mechanisms causing scar tissue formation especially for the patients who had vesicoureteral reflux. Further clinical and experimental investigations are required to elucidate in detail the physiology of liver-type fatty acid-binding protein.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Tsai JD, Huang FY, Tsai TC (1998) Asymptomatic vesicoureteral reflux detected by neonatal ultrasonographic screening. Pediatr Nephrol 12:206–209. doi:10.1007/s004670050438

  2. 2.

    Gokce I, Alpay H, Biyikli N, Unluguzel G, Dede F, Topuzoglu A (2010) Urinary levels of interleukin-6 and interleukin-8 in patients with vesicoureteral reflux and renal parenchymal scar. Pediatr Nephrol 25:905–912. doi:10.1007/s00467-009-1396-2

  3. 3.

    Mattoo TK, Mathews R (2009) Vesicoureteral Reflux and Renal Scarring. In: Avner ED, Harman WE, Niaudet P (eds) Pediatric nephrology, 6th edn. Springer Verlag, Berlin, pp 1311–1336. doi:10.1007/978-3-540-76341-3_55

  4. 4.

    Jakobsson B, Berg U, Svensson L (1994) Renal scarring after acute pyelonephritis. Arch Dis Child 70:111–115. doi:10.1007/BF00858145

  5. 5.

    Orellana P, Baquedano P, Rangarajan V et al (2004) Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol 19:1122–1126. doi:10.1007/s00467-004-1501-5

  6. 6.

    Vallee JP, Vallee MP, Greenfield SP, Wan J, Springate J (1999) Contemporary incidence of morbidity related to vesicoureteral reflux. Urology 53:812–815. doi:10.1016/S0090-4295(98)00587-1. http://www.goldjournal.net/article/S0090-4295(98)00587-1/pdf

  7. 7.

    Peters C, Rushton HG (2010) Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J Urol 184:265–273. doi:10.1016/j.juro.2010.03.076. http://www.jurology.com/article/S0022-5347(10)03147-2/pdf

  8. 8.

    Maatman R, Vandewesterlo EMA, Vankuppevelt T, Veerkamp JH (1992) Molecular-identification of the liver-type and the heart-type fatty acid-binding proteins in human and rat-kidney—use of the reverse-transcriptase polymerase chain-reaction. Biochem J 288:285–290. doi:10.1042/bj2880285

  9. 9.

    Doi K, Noiri E, Sugaya T (2010) Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care. Springer 16:545–549. doi:10.1097/MCC.0b013e32833e2fa4. https://www.fabp.jp/assets/files/monograph/%5BR8%5DCOCC(Doi).pdf

  10. 10.

    Kamijo-Ikemori A, Ichikawa D, Matsui K, Yokoyama T, Sugaya T, Kimura K (2013) Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho byori. Jpn J Clin Pathol [abstract] 61:635–640. PMID:24205707. http://www.ncbi.nlm.nih.gov/pubmed/24205707

  11. 11.

    Vijayasimha M, Phil M, Kumar S, Majumdar D, Satyanarayana PV, Yadav A, et al (2014) Liver type fatty acid binding protein (L-FABP): a marker of contrast induced—acute kidney injury. Adv Life Sci Technol [Internet] 19:22–27. http://www.iiste.org/Journals/index.php/ALST/article/viewFile/12113/12466

  12. 12.

    Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K (2009) Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol 174:2096–2106. doi:10.2353/ajpath.2009.080780

  13. 13.

    Fufaa GD, Weil EJ, Nelson RG, Hanson RL, Bonventre JV, Sabbisetti V et al (2014) Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia 58:188–198. doi:10.1007/s00125-014-3389-3

  14. 14.

    Kamijo A, Sugaya T, Hikawa A, Yamanouchi M, Hirata Y, Ishimitsu T, et al (2006) Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol Cell Biochem 284:175–182. doi:10.1007/s11010-005-9047-9. http://link.springer.com/article/10.1007%2Fs11010-005-9047-9#page-1

  15. 15.

    Ishimitsu T, Ohta S, Saito M, Teranishi M, Inada H, Yoshii M et al (2005) Urinary excretion of liver fatty acid-binding protein in health-check participants. Clin Exp Nephrol 9:34–39. doi:10.1007/s10157-004-0331-x

  16. 16.

    Kamijo-Ikemori A, Sugaya T, Ichikawa D, Hoshino S, Matsui K, Yokoyama T et al (2013) Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta 424:104–108. doi:10.1016/j.cca.2013.05.020

  17. 17.

    Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE (1985) International system of radiographic grading of vesicoureteric reflux. Pediatr Radiol 15:105–109. doi:10.1007/BF02388714

  18. 18.

    Patel K, Charron M, Hoberman A, Brown ML, Rogers KD (1993) Intra and inter-observer variability in interpretation of DMSA scans using a set of standardized criteria. Pediatr Radiol 23:506–509. doi:10.1007/BF02012131

  19. 19.

    Imperiale A, Olianti C, Sestini S, Materassi M, Seracini D, Ienuso R, et al (2003) 123I-hippuran renal scintigraphy with evaluation of single-kidney clearance for predicting renal scarring after acute urinary tract infection: comparison with (99 m) Tc-DMSA scanning. J Nucl Med Off Publ Soc Nucl Med 44:1755–1760. PMID:14602856. http://jnm.snmjournals.org/content/44/11/1755.full.pdf

  20. 20.

    Carpenter MA, Hoberman A, Mattoo TK, Mathews R, Keren R, Chesney RW et al (2013) The RIVUR trial: profile and baseline clinical associations of children with vesicoureteral reflux. Pediatrics 132:34–45. doi:10.1542/peds.2012-2301

  21. 21.

    Sweeney B, Cascio S, Velayudham M, Puri P (2001) Reflux nephropathy in infancy: a comparison of infants presenting with and without urinary tract infection. J Urol 166:648–650. doi:10.1016/S0022-5347(05)66036-3

  22. 22.

    Siegel SR, Sokoloff B, Siegel B, Dodge WF, West EF, Fras PA et al (1980) Urinary infection in infants and preschool children. Am J Dis Child 134:369–372. doi:10.1001/archpedi.1980.04490010027010

  23. 23.

    Sargent MA (2000) Opinion what is the normal prevalence of vesicoureteral reflux? Pediatr Radiol 30:587–593. doi:10.1007/s002470000263

  24. 24.

    Tekgül S, Riedmiller H, Hoebeke P, Kočvara R, Nijman RJM, Radmayr C et al (2012) EAU guidelines on vesicoureteral reflux in children. Eur Urol 62:534–542. doi:10.1016/j.eururo.2012.05.059

  25. 25.

    Phan V, Traubici J, Hershenfield B, Stephens D, Rosenblum ND, Geary DF (2003) Vesicoureteral reflux in infants with isolated antenatal hydronephrosis. Pediatr Nephrol 18:1224–1228. doi:10.1007/s00467-003-1287-x

  26. 26.

    Furuhashi M, Saitoh S, Shimamoto K, Miura T (2014) Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol 8(Suppl 3):23–33. doi:10.4137/CMC.S17067

  27. 27.

    Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A et al (2007) Renal L-type fatty acid–binding protein in acute ischemic injury. J Am Soc Nephrol 18:2894–2902. doi:10.1681/ASN.2007010097

  28. 28.

    Nakamura T, Kawagoe Y, Sugaya T, Koide H, Ueda Y, Osada S (2005) Candesartan reduces urinary fatty Acid-binding protein excretion in patients with autosomal dominant polycystic kidney disease. Am J Med Sci 330:161–165. doi:10.1097/00000441-200510000-00002. http://www.sciencedirect.com/science/article/pii/S0002962915329128

  29. 29.

    Casal JA, Hermida J, Lens XM, Tutor JC (2005) A comparative study of three kidney biomarker tests in autosomal-dominant polycystic kidney disease. Kidney Int 68:948–954. doi:10.1111/j.1523-1755.2005.00488.x

  30. 30.

    Nakamura T, Sugaya T, Ebihara I, Koide H (2005) Urinary liver-type fatty acid-binding protein: discrimination between IgA nephropathy and thin basement membrane nephropathy. Am J Nephrol 25:447–450. doi:10.1159/000087826

  31. 31.

    Mou S, Wang Q, Li J, Shi B, Ni Z (2012) Urinary excretion of liver-type fatty acid-binding protein as a marker of progressive kidney function deterioration in patients with chronic glomerulonephritis. Clin Chim Acta 413:187–191. doi:10.1016/j.cca.2011.09.018

  32. 32.

    Ivanišević I, Peco-Antić A, Vuličević I, Hercog D, Milovanović V, Kotur-Stevuljević J et al (2013) L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol 28:963–969. doi:10.1007/s00467-013-2421-z

  33. 33.

    Noyan A, Parmaksiz G, Ezer SS, Anarat R, Cengiz N (2015) Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis. Pediatr Urol 11:e1-249. doi:10.1016/j.jpurol.2015.02.021

  34. 34.

    Chou K-M, Lee C-C, Chen C-H, Sun C-Y (2013) Clinical value of NGAL, L-FABP and albuminuria in predicting GFR decline in type 2 diabetes mellitus patients. PLoS One 8:e54863. doi:10.1371/journal.pone.0054863

  35. 35.

    Parmaksız G, Noyan A, Dursun H, İnce E, Anarat R, Cengiz N (2016) Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr Nephrol 31:97–103. doi:10.1007/s00467-015-3194-3

  36. 36.

    Ichino M, Kusaka M, Kuroyanagi Y, Mori T, Morooka M, Sasaki H et al (2010) Urinary neutrophil-gelatinase associated lipocalin is a potential noninvasive marker for renal scarring in patients with vesicoureteral reflux. J Urol 183:2001–2007. doi:10.1016/j.juro.2010.01.031

  37. 37.

    Hodgkins KS, Schnaper HW (2012) Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27:901–909. doi:10.1007/s00467-011-1992-9

  38. 38.

    Tanaka T, Doi K, Maeda-Mamiya R, Negishi K, Portilla D, Sugaya T et al (2009) Urinary L-type fatty acid-binding protein can reflect renal tubulointerstitial injury. Am J Pathol 174:1203–1211. doi:10.2353/ajpath.2009.080511

  39. 39.

    Kitao T, Kimata T, Yamanouchi S, Kato S, Tsuji S, Kaneko K (2015) Urinary biomarkers for screening for renal scarring in children with febrile urinary tract infection: pilot study. J Urol 194:766–771. doi:10.1016/j.juro.2015.04.091

  40. 40.

    Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS et al (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42:871–879. doi:10.1002/hep.20857

  41. 41.

    Kamijo-Ikemori A, Sugaya T, Obama A, Hiroi J, Miura H, Watanabe M et al (2006) Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. Am J Pathol 169:1107–1117. doi:10.2353/ajpath.2006.060131

  42. 42.

    Mori Y, Sato N, Kobayashi Y, Ochiai R (2014) Low levels of urinary liver-type fatty acid-binding protein may indicate a lack of kidney protection during aortic arch surgery requiring hypothermic circulatory arrest. J Clin Anesth 26:118–124. doi:10.1016/j.jclinane.2013.07.014

  43. 43.

    Cone EJ, Caplan YH, Moser F, Robert T, Shelby MK, Black DL (2009) Normalization of urinary drug concentrations with specific gravity and creatinine. J Anal Toxicol 33:1–7. doi:10.1093/jat/33.1.1

  44. 44.

    Waikar SS, Sabbisetti VS, Bonventre JV (2010) Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 78:486–494. doi:10.1038/ki.2010.165

  45. 45.

    Goldstein SL (2010) Urinary kidney injury biomarkers and urine creatinine normalization: a false premise or not? Kidney Int 78:433–435. doi:10.1038/ki.2010.200

  46. 46.

    Tang KWA, Toh QC, Teo BW (2015) Normalisation of urinary biomarkers to creatinine for clinical practice and research-when and why. Singapore Med J 56:7–10. doi:10.11622/smedj.2015003

Download references

Acknowledgments

This study was funded by The Educational Planning Commission of Bakırköy Dr Sadi Konuk Training and Research Hospital (11/07/2014; 7/8).

Author information

Correspondence to Meryem Benzer.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benzer, M., Tekin Neijmann, S., Gültekin, N.D. et al. Urinary L-FABP as a marker of vesicoureteral reflux in children: could it also have a protective effect on the kidney?. Int Urol Nephrol 49, 1–12 (2017). https://doi.org/10.1007/s11255-016-1389-6

Download citation

Keywords

  • Vesicoureteral reflux
  • Renal parenchymal scarring
  • Liver fatty acid-binding protein (L-FABP)
  • Children